2025-02-23T14:17:28-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-146992%22&qt=morelikethis&rows=5
2025-02-23T14:17:28-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-146992%22&qt=morelikethis&rows=5
2025-02-23T14:17:28-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T14:17:28-05:00 DEBUG: Deserialized SOLR response
Vertex Algebras W(p)Am and W(p)Dm and Constant Term Identities
We consider AD-type orbifolds of the triplet vertex algebras W(p) extending the well-known c=1 orbifolds of lattice vertex algebras. We study the structure of Zhu's algebras A(W(p)Am) and A(W(p)Dm), where Am and Dm are cyclic and dihedral groups, respectively. A combinatorial algorithm for clas...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Інститут математики НАН України
2015
|
Series: | Symmetry, Integrability and Geometry: Methods and Applications |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/146992 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We consider AD-type orbifolds of the triplet vertex algebras W(p) extending the well-known c=1 orbifolds of lattice vertex algebras. We study the structure of Zhu's algebras A(W(p)Am) and A(W(p)Dm), where Am and Dm are cyclic and dihedral groups, respectively. A combinatorial algorithm for classification of irreducible W(p)Γ-modules is developed, which relies on a family of constant term identities and properties of certain polynomials based on constant terms. All these properties can be checked for small values of m and p with a computer software. As a result, we argue that if certain constant term properties hold, the irreducible modules constructed in [Commun. Contemp. Math. 15 (2013), 1350028, 30 pages; Internat. J. Math. 25 (2014), 1450001, 34 pages] provide a complete list of irreducible W(p)Am and W(p)Dm-modules. This paper is a continuation of our previous work on the ADE subalgebras of the triplet vertex algebra W(p). |
---|