Long-Time Asymptotics for the Defocusing Integrable Discrete Nonlinear Schrödinger Equation II
We investigate the long-time asymptotics for the defocusing integrable discrete nonlinear Schrödinger equation. If |n| < 2t, we have decaying oscillation of order O(t⁻¹/²) as was proved in our previous paper. Near |n|=2t, the behavior is decaying oscillation of order O(t⁻¹/³) and the coefficient...
Збережено в:
Дата: | 2015 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2015
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/146996 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Long-Time Asymptotics for the Defocusing Integrable Discrete Nonlinear Schrödinger Equation II / H. Yamane // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 6 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | We investigate the long-time asymptotics for the defocusing integrable discrete nonlinear Schrödinger equation. If |n| < 2t, we have decaying oscillation of order O(t⁻¹/²) as was proved in our previous paper. Near |n|=2t, the behavior is decaying oscillation of order O(t⁻¹/³) and the coefficient of the leading term is expressed by the Painlevé II function. In |n| > 2t, the solution decays more rapidly than any negative power of n. |
---|