Generalized Convolution Roots of Positive Definite Kernels on Complex Spheres
Convolution is an important tool in the construction of positive definite kernels on a manifold. This contribution provides conditions on an L²-positive definite and zonal kernel on the unit sphere of Cq in order that the kernel can be recovered as a generalized convolution root of an equally positi...
Збережено в:
Дата: | 2015 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2015
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/147000 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Generalized Convolution Roots of Positive Definite Kernels on Complex Spheres / V.S. Barbosa, V.A. Menegatto // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 19 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | Convolution is an important tool in the construction of positive definite kernels on a manifold. This contribution provides conditions on an L²-positive definite and zonal kernel on the unit sphere of Cq in order that the kernel can be recovered as a generalized convolution root of an equally positive definite and zonal kernel. |
---|