Non-Schlesinger Isomonodromic Deformations of Fuchsian Systems and Middle Convolution

The paper is devoted to non-Schlesinger isomonodromic deformations for resonant Fuchsian systems. There are very few explicit examples of such deformations in the literature. In this paper we construct a new example of the non-Schlesinger isomonodromic deformation for a resonant Fuchsian system of o...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2015
Автори: Bibilo, Y., Filipuk, G.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2015
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/147002
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Non-Schlesinger Isomonodromic Deformations of Fuchsian Systems and Middle Convolution / Y. Bibilo, G. Filipuk // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 51 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-147002
record_format dspace
spelling irk-123456789-1470022019-02-13T01:24:37Z Non-Schlesinger Isomonodromic Deformations of Fuchsian Systems and Middle Convolution Bibilo, Y. Filipuk, G. The paper is devoted to non-Schlesinger isomonodromic deformations for resonant Fuchsian systems. There are very few explicit examples of such deformations in the literature. In this paper we construct a new example of the non-Schlesinger isomonodromic deformation for a resonant Fuchsian system of order 5 by using middle convolution for a resonant Fuchsian system of order 2. Moreover, it is known that middle convolution is an operation that preserves Schlesinger's deformation equations for non-resonant Fuchsian systems. In this paper we show that Bolibruch's non-Schlesinger deformations of resonant Fuchsian systems are, in general, not preserved by middle convolution. 2015 Article Non-Schlesinger Isomonodromic Deformations of Fuchsian Systems and Middle Convolution / Y. Bibilo, G. Filipuk // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 51 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 34M56; 44A15 DOI:10.3842/SIGMA.2015.023 http://dspace.nbuv.gov.ua/handle/123456789/147002 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description The paper is devoted to non-Schlesinger isomonodromic deformations for resonant Fuchsian systems. There are very few explicit examples of such deformations in the literature. In this paper we construct a new example of the non-Schlesinger isomonodromic deformation for a resonant Fuchsian system of order 5 by using middle convolution for a resonant Fuchsian system of order 2. Moreover, it is known that middle convolution is an operation that preserves Schlesinger's deformation equations for non-resonant Fuchsian systems. In this paper we show that Bolibruch's non-Schlesinger deformations of resonant Fuchsian systems are, in general, not preserved by middle convolution.
format Article
author Bibilo, Y.
Filipuk, G.
spellingShingle Bibilo, Y.
Filipuk, G.
Non-Schlesinger Isomonodromic Deformations of Fuchsian Systems and Middle Convolution
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Bibilo, Y.
Filipuk, G.
author_sort Bibilo, Y.
title Non-Schlesinger Isomonodromic Deformations of Fuchsian Systems and Middle Convolution
title_short Non-Schlesinger Isomonodromic Deformations of Fuchsian Systems and Middle Convolution
title_full Non-Schlesinger Isomonodromic Deformations of Fuchsian Systems and Middle Convolution
title_fullStr Non-Schlesinger Isomonodromic Deformations of Fuchsian Systems and Middle Convolution
title_full_unstemmed Non-Schlesinger Isomonodromic Deformations of Fuchsian Systems and Middle Convolution
title_sort non-schlesinger isomonodromic deformations of fuchsian systems and middle convolution
publisher Інститут математики НАН України
publishDate 2015
url http://dspace.nbuv.gov.ua/handle/123456789/147002
citation_txt Non-Schlesinger Isomonodromic Deformations of Fuchsian Systems and Middle Convolution / Y. Bibilo, G. Filipuk // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 51 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT bibiloy nonschlesingerisomonodromicdeformationsoffuchsiansystemsandmiddleconvolution
AT filipukg nonschlesingerisomonodromicdeformationsoffuchsiansystemsandmiddleconvolution
first_indexed 2023-05-20T17:26:17Z
last_indexed 2023-05-20T17:26:17Z
_version_ 1796153293158744064