Non-Schlesinger Isomonodromic Deformations of Fuchsian Systems and Middle Convolution
The paper is devoted to non-Schlesinger isomonodromic deformations for resonant Fuchsian systems. There are very few explicit examples of such deformations in the literature. In this paper we construct a new example of the non-Schlesinger isomonodromic deformation for a resonant Fuchsian system of o...
Збережено в:
Дата: | 2015 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2015
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/147002 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Non-Schlesinger Isomonodromic Deformations of Fuchsian Systems and Middle Convolution / Y. Bibilo, G. Filipuk // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 51 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-147002 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1470022019-02-13T01:24:37Z Non-Schlesinger Isomonodromic Deformations of Fuchsian Systems and Middle Convolution Bibilo, Y. Filipuk, G. The paper is devoted to non-Schlesinger isomonodromic deformations for resonant Fuchsian systems. There are very few explicit examples of such deformations in the literature. In this paper we construct a new example of the non-Schlesinger isomonodromic deformation for a resonant Fuchsian system of order 5 by using middle convolution for a resonant Fuchsian system of order 2. Moreover, it is known that middle convolution is an operation that preserves Schlesinger's deformation equations for non-resonant Fuchsian systems. In this paper we show that Bolibruch's non-Schlesinger deformations of resonant Fuchsian systems are, in general, not preserved by middle convolution. 2015 Article Non-Schlesinger Isomonodromic Deformations of Fuchsian Systems and Middle Convolution / Y. Bibilo, G. Filipuk // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 51 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 34M56; 44A15 DOI:10.3842/SIGMA.2015.023 http://dspace.nbuv.gov.ua/handle/123456789/147002 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
The paper is devoted to non-Schlesinger isomonodromic deformations for resonant Fuchsian systems. There are very few explicit examples of such deformations in the literature. In this paper we construct a new example of the non-Schlesinger isomonodromic deformation for a resonant Fuchsian system of order 5 by using middle convolution for a resonant Fuchsian system of order 2. Moreover, it is known that middle convolution is an operation that preserves Schlesinger's deformation equations for non-resonant Fuchsian systems. In this paper we show that Bolibruch's non-Schlesinger deformations of resonant Fuchsian systems are, in general, not preserved by middle convolution. |
format |
Article |
author |
Bibilo, Y. Filipuk, G. |
spellingShingle |
Bibilo, Y. Filipuk, G. Non-Schlesinger Isomonodromic Deformations of Fuchsian Systems and Middle Convolution Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Bibilo, Y. Filipuk, G. |
author_sort |
Bibilo, Y. |
title |
Non-Schlesinger Isomonodromic Deformations of Fuchsian Systems and Middle Convolution |
title_short |
Non-Schlesinger Isomonodromic Deformations of Fuchsian Systems and Middle Convolution |
title_full |
Non-Schlesinger Isomonodromic Deformations of Fuchsian Systems and Middle Convolution |
title_fullStr |
Non-Schlesinger Isomonodromic Deformations of Fuchsian Systems and Middle Convolution |
title_full_unstemmed |
Non-Schlesinger Isomonodromic Deformations of Fuchsian Systems and Middle Convolution |
title_sort |
non-schlesinger isomonodromic deformations of fuchsian systems and middle convolution |
publisher |
Інститут математики НАН України |
publishDate |
2015 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/147002 |
citation_txt |
Non-Schlesinger Isomonodromic Deformations of Fuchsian Systems and Middle Convolution / Y. Bibilo, G. Filipuk // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 51 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT bibiloy nonschlesingerisomonodromicdeformationsoffuchsiansystemsandmiddleconvolution AT filipukg nonschlesingerisomonodromicdeformationsoffuchsiansystemsandmiddleconvolution |
first_indexed |
2023-05-20T17:26:17Z |
last_indexed |
2023-05-20T17:26:17Z |
_version_ |
1796153293158744064 |