Fourier and Gegenbauer Expansions for a Fundamental Solution of Laplace's Equation in Hyperspherical Geometry

For a fundamental solution of Laplace's equation on the R-radius d-dimensional hypersphere, we compute the azimuthal Fourier coefficients in closed form in two and three dimensions. We also compute the Gegenbauer polynomial expansion for a fundamental solution of Laplace's equation in hype...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2015
Автори: Cohl, H.S., Palmer, R.M.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2015
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/147003
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Fourier and Gegenbauer Expansions for a Fundamental Solution of Laplace's Equation in Hyperspherical Geometry / H.S. Cohl, R.M. Palmer // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 28 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-147003
record_format dspace
spelling irk-123456789-1470032019-02-13T01:24:34Z Fourier and Gegenbauer Expansions for a Fundamental Solution of Laplace's Equation in Hyperspherical Geometry Cohl, H.S. Palmer, R.M. For a fundamental solution of Laplace's equation on the R-radius d-dimensional hypersphere, we compute the azimuthal Fourier coefficients in closed form in two and three dimensions. We also compute the Gegenbauer polynomial expansion for a fundamental solution of Laplace's equation in hyperspherical geometry in geodesic polar coordinates. From this expansion in three-dimensions, we derive an addition theorem for the azimuthal Fourier coefficients of a fundamental solution of Laplace's equation on the 3-sphere. Applications of our expansions are given, namely closed-form solutions to Poisson's equation with uniform density source distributions. The Newtonian potential is obtained for the 2-disc on the 2-sphere and 3-ball and circular curve segment on the 3-sphere. Applications are also given to the superintegrable Kepler-Coulomb and isotropic oscillator potentials. 2015 Article Fourier and Gegenbauer Expansions for a Fundamental Solution of Laplace's Equation in Hyperspherical Geometry / H.S. Cohl, R.M. Palmer // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 28 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 31C12; 32Q10; 33C05; 33C45; 33C55; 35J05; 35A08; 42A16 DOI:10.3842/SIGMA.2015.015 http://dspace.nbuv.gov.ua/handle/123456789/147003 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description For a fundamental solution of Laplace's equation on the R-radius d-dimensional hypersphere, we compute the azimuthal Fourier coefficients in closed form in two and three dimensions. We also compute the Gegenbauer polynomial expansion for a fundamental solution of Laplace's equation in hyperspherical geometry in geodesic polar coordinates. From this expansion in three-dimensions, we derive an addition theorem for the azimuthal Fourier coefficients of a fundamental solution of Laplace's equation on the 3-sphere. Applications of our expansions are given, namely closed-form solutions to Poisson's equation with uniform density source distributions. The Newtonian potential is obtained for the 2-disc on the 2-sphere and 3-ball and circular curve segment on the 3-sphere. Applications are also given to the superintegrable Kepler-Coulomb and isotropic oscillator potentials.
format Article
author Cohl, H.S.
Palmer, R.M.
spellingShingle Cohl, H.S.
Palmer, R.M.
Fourier and Gegenbauer Expansions for a Fundamental Solution of Laplace's Equation in Hyperspherical Geometry
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Cohl, H.S.
Palmer, R.M.
author_sort Cohl, H.S.
title Fourier and Gegenbauer Expansions for a Fundamental Solution of Laplace's Equation in Hyperspherical Geometry
title_short Fourier and Gegenbauer Expansions for a Fundamental Solution of Laplace's Equation in Hyperspherical Geometry
title_full Fourier and Gegenbauer Expansions for a Fundamental Solution of Laplace's Equation in Hyperspherical Geometry
title_fullStr Fourier and Gegenbauer Expansions for a Fundamental Solution of Laplace's Equation in Hyperspherical Geometry
title_full_unstemmed Fourier and Gegenbauer Expansions for a Fundamental Solution of Laplace's Equation in Hyperspherical Geometry
title_sort fourier and gegenbauer expansions for a fundamental solution of laplace's equation in hyperspherical geometry
publisher Інститут математики НАН України
publishDate 2015
url http://dspace.nbuv.gov.ua/handle/123456789/147003
citation_txt Fourier and Gegenbauer Expansions for a Fundamental Solution of Laplace's Equation in Hyperspherical Geometry / H.S. Cohl, R.M. Palmer // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 28 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT cohlhs fourierandgegenbauerexpansionsforafundamentalsolutionoflaplacesequationinhypersphericalgeometry
AT palmerrm fourierandgegenbauerexpansionsforafundamentalsolutionoflaplacesequationinhypersphericalgeometry
first_indexed 2023-05-20T17:26:17Z
last_indexed 2023-05-20T17:26:17Z
_version_ 1796153293264650240