On the q-Charlier Multiple Orthogonal Polynomials

We introduce a new family of special functions, namely q-Charlier multiple orthogonal polynomials. These polynomials are orthogonal with respect to q-analogues of Poisson distributions. We focus our attention on their structural properties. Raising and lowering operators as well as Rodrigues-type fo...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2015
Автори: Arvesú, J., Ramírez-Aberasturis, A.M.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2015
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/147005
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On the q-Charlier Multiple Orthogonal Polynomials / J. Arvesú, A.M. Ramírez-Aberasturis // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 20 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-147005
record_format dspace
spelling irk-123456789-1470052019-02-13T01:23:58Z On the q-Charlier Multiple Orthogonal Polynomials Arvesú, J. Ramírez-Aberasturis, A.M. We introduce a new family of special functions, namely q-Charlier multiple orthogonal polynomials. These polynomials are orthogonal with respect to q-analogues of Poisson distributions. We focus our attention on their structural properties. Raising and lowering operators as well as Rodrigues-type formulas are obtained. An explicit representation in terms of a q-analogue of the second of Appell's hypergeometric functions is given. A high-order linear q-difference equation with polynomial coefficients is deduced. Moreover, we show how to obtain the nearest neighbor recurrence relation from some difference operators involved in the Rodrigues-type formula. 2015 Article On the q-Charlier Multiple Orthogonal Polynomials / J. Arvesú, A.M. Ramírez-Aberasturis // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 20 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 42C05; 33E30; 33C47; 33C65 DOI:10.3842/SIGMA.2015.026 http://dspace.nbuv.gov.ua/handle/123456789/147005 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We introduce a new family of special functions, namely q-Charlier multiple orthogonal polynomials. These polynomials are orthogonal with respect to q-analogues of Poisson distributions. We focus our attention on their structural properties. Raising and lowering operators as well as Rodrigues-type formulas are obtained. An explicit representation in terms of a q-analogue of the second of Appell's hypergeometric functions is given. A high-order linear q-difference equation with polynomial coefficients is deduced. Moreover, we show how to obtain the nearest neighbor recurrence relation from some difference operators involved in the Rodrigues-type formula.
format Article
author Arvesú, J.
Ramírez-Aberasturis, A.M.
spellingShingle Arvesú, J.
Ramírez-Aberasturis, A.M.
On the q-Charlier Multiple Orthogonal Polynomials
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Arvesú, J.
Ramírez-Aberasturis, A.M.
author_sort Arvesú, J.
title On the q-Charlier Multiple Orthogonal Polynomials
title_short On the q-Charlier Multiple Orthogonal Polynomials
title_full On the q-Charlier Multiple Orthogonal Polynomials
title_fullStr On the q-Charlier Multiple Orthogonal Polynomials
title_full_unstemmed On the q-Charlier Multiple Orthogonal Polynomials
title_sort on the q-charlier multiple orthogonal polynomials
publisher Інститут математики НАН України
publishDate 2015
url http://dspace.nbuv.gov.ua/handle/123456789/147005
citation_txt On the q-Charlier Multiple Orthogonal Polynomials / J. Arvesú, A.M. Ramírez-Aberasturis // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 20 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT arvesuj ontheqcharliermultipleorthogonalpolynomials
AT ramirezaberasturisam ontheqcharliermultipleorthogonalpolynomials
first_indexed 2023-05-20T17:26:17Z
last_indexed 2023-05-20T17:26:17Z
_version_ 1796153294116093952