On the q-Charlier Multiple Orthogonal Polynomials
We introduce a new family of special functions, namely q-Charlier multiple orthogonal polynomials. These polynomials are orthogonal with respect to q-analogues of Poisson distributions. We focus our attention on their structural properties. Raising and lowering operators as well as Rodrigues-type fo...
Збережено в:
Дата: | 2015 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2015
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/147005 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | On the q-Charlier Multiple Orthogonal Polynomials / J. Arvesú, A.M. Ramírez-Aberasturis // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 20 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-147005 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1470052019-02-13T01:23:58Z On the q-Charlier Multiple Orthogonal Polynomials Arvesú, J. Ramírez-Aberasturis, A.M. We introduce a new family of special functions, namely q-Charlier multiple orthogonal polynomials. These polynomials are orthogonal with respect to q-analogues of Poisson distributions. We focus our attention on their structural properties. Raising and lowering operators as well as Rodrigues-type formulas are obtained. An explicit representation in terms of a q-analogue of the second of Appell's hypergeometric functions is given. A high-order linear q-difference equation with polynomial coefficients is deduced. Moreover, we show how to obtain the nearest neighbor recurrence relation from some difference operators involved in the Rodrigues-type formula. 2015 Article On the q-Charlier Multiple Orthogonal Polynomials / J. Arvesú, A.M. Ramírez-Aberasturis // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 20 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 42C05; 33E30; 33C47; 33C65 DOI:10.3842/SIGMA.2015.026 http://dspace.nbuv.gov.ua/handle/123456789/147005 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We introduce a new family of special functions, namely q-Charlier multiple orthogonal polynomials. These polynomials are orthogonal with respect to q-analogues of Poisson distributions. We focus our attention on their structural properties. Raising and lowering operators as well as Rodrigues-type formulas are obtained. An explicit representation in terms of a q-analogue of the second of Appell's hypergeometric functions is given. A high-order linear q-difference equation with polynomial coefficients is deduced. Moreover, we show how to obtain the nearest neighbor recurrence relation from some difference operators involved in the Rodrigues-type formula. |
format |
Article |
author |
Arvesú, J. Ramírez-Aberasturis, A.M. |
spellingShingle |
Arvesú, J. Ramírez-Aberasturis, A.M. On the q-Charlier Multiple Orthogonal Polynomials Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Arvesú, J. Ramírez-Aberasturis, A.M. |
author_sort |
Arvesú, J. |
title |
On the q-Charlier Multiple Orthogonal Polynomials |
title_short |
On the q-Charlier Multiple Orthogonal Polynomials |
title_full |
On the q-Charlier Multiple Orthogonal Polynomials |
title_fullStr |
On the q-Charlier Multiple Orthogonal Polynomials |
title_full_unstemmed |
On the q-Charlier Multiple Orthogonal Polynomials |
title_sort |
on the q-charlier multiple orthogonal polynomials |
publisher |
Інститут математики НАН України |
publishDate |
2015 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/147005 |
citation_txt |
On the q-Charlier Multiple Orthogonal Polynomials / J. Arvesú, A.M. Ramírez-Aberasturis // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 20 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT arvesuj ontheqcharliermultipleorthogonalpolynomials AT ramirezaberasturisam ontheqcharliermultipleorthogonalpolynomials |
first_indexed |
2023-05-20T17:26:17Z |
last_indexed |
2023-05-20T17:26:17Z |
_version_ |
1796153294116093952 |