An Integrability Condition for Simple Lie Groups II
It is shown that a simple Lie group G (≠SL₂) can be locally characterised by an integrability condition on an Aut(g) structure on the tangent bundle, where Aut(g) is the automorphism group of the Lie algebra of G. The integrability condition is the vanishing of a torsion tensor of type (1,2). This i...
Збережено в:
Дата: | 2015 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2015
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/147007 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | An Integrability Condition for Simple Lie Groups II / M. Min-Oo // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 6 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-147007 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1470072019-02-13T01:24:37Z An Integrability Condition for Simple Lie Groups II Min-Oo, M. It is shown that a simple Lie group G (≠SL₂) can be locally characterised by an integrability condition on an Aut(g) structure on the tangent bundle, where Aut(g) is the automorphism group of the Lie algebra of G. The integrability condition is the vanishing of a torsion tensor of type (1,2). This is a slight improvement of an earlier result proved in [Min-Oo M., Ruh E.A., in Differential Geometry and Complex Analysis, Springer, Berlin, 1985, 205-211]. 2015 Article An Integrability Condition for Simple Lie Groups II / M. Min-Oo // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 6 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 53C10; 53C30 DOI:10.3842/SIGMA.2015.027 http://dspace.nbuv.gov.ua/handle/123456789/147007 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
It is shown that a simple Lie group G (≠SL₂) can be locally characterised by an integrability condition on an Aut(g) structure on the tangent bundle, where Aut(g) is the automorphism group of the Lie algebra of G. The integrability condition is the vanishing of a torsion tensor of type (1,2). This is a slight improvement of an earlier result proved in [Min-Oo M., Ruh E.A., in Differential Geometry and Complex Analysis, Springer, Berlin, 1985, 205-211]. |
format |
Article |
author |
Min-Oo, M. |
spellingShingle |
Min-Oo, M. An Integrability Condition for Simple Lie Groups II Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Min-Oo, M. |
author_sort |
Min-Oo, M. |
title |
An Integrability Condition for Simple Lie Groups II |
title_short |
An Integrability Condition for Simple Lie Groups II |
title_full |
An Integrability Condition for Simple Lie Groups II |
title_fullStr |
An Integrability Condition for Simple Lie Groups II |
title_full_unstemmed |
An Integrability Condition for Simple Lie Groups II |
title_sort |
integrability condition for simple lie groups ii |
publisher |
Інститут математики НАН України |
publishDate |
2015 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/147007 |
citation_txt |
An Integrability Condition for Simple Lie Groups II / M. Min-Oo // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 6 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT minoom anintegrabilityconditionforsimpleliegroupsii AT minoom integrabilityconditionforsimpleliegroupsii |
first_indexed |
2023-05-20T17:26:18Z |
last_indexed |
2023-05-20T17:26:18Z |
_version_ |
1796153294326857728 |