An Integrability Condition for Simple Lie Groups II

It is shown that a simple Lie group G (≠SL₂) can be locally characterised by an integrability condition on an Aut(g) structure on the tangent bundle, where Aut(g) is the automorphism group of the Lie algebra of G. The integrability condition is the vanishing of a torsion tensor of type (1,2). This i...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2015
Автор: Min-Oo, M.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2015
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/147007
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:An Integrability Condition for Simple Lie Groups II / M. Min-Oo // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 6 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-147007
record_format dspace
spelling irk-123456789-1470072019-02-13T01:24:37Z An Integrability Condition for Simple Lie Groups II Min-Oo, M. It is shown that a simple Lie group G (≠SL₂) can be locally characterised by an integrability condition on an Aut(g) structure on the tangent bundle, where Aut(g) is the automorphism group of the Lie algebra of G. The integrability condition is the vanishing of a torsion tensor of type (1,2). This is a slight improvement of an earlier result proved in [Min-Oo M., Ruh E.A., in Differential Geometry and Complex Analysis, Springer, Berlin, 1985, 205-211]. 2015 Article An Integrability Condition for Simple Lie Groups II / M. Min-Oo // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 6 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 53C10; 53C30 DOI:10.3842/SIGMA.2015.027 http://dspace.nbuv.gov.ua/handle/123456789/147007 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description It is shown that a simple Lie group G (≠SL₂) can be locally characterised by an integrability condition on an Aut(g) structure on the tangent bundle, where Aut(g) is the automorphism group of the Lie algebra of G. The integrability condition is the vanishing of a torsion tensor of type (1,2). This is a slight improvement of an earlier result proved in [Min-Oo M., Ruh E.A., in Differential Geometry and Complex Analysis, Springer, Berlin, 1985, 205-211].
format Article
author Min-Oo, M.
spellingShingle Min-Oo, M.
An Integrability Condition for Simple Lie Groups II
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Min-Oo, M.
author_sort Min-Oo, M.
title An Integrability Condition for Simple Lie Groups II
title_short An Integrability Condition for Simple Lie Groups II
title_full An Integrability Condition for Simple Lie Groups II
title_fullStr An Integrability Condition for Simple Lie Groups II
title_full_unstemmed An Integrability Condition for Simple Lie Groups II
title_sort integrability condition for simple lie groups ii
publisher Інститут математики НАН України
publishDate 2015
url http://dspace.nbuv.gov.ua/handle/123456789/147007
citation_txt An Integrability Condition for Simple Lie Groups II / M. Min-Oo // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 6 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT minoom anintegrabilityconditionforsimpleliegroupsii
AT minoom integrabilityconditionforsimpleliegroupsii
first_indexed 2023-05-20T17:26:18Z
last_indexed 2023-05-20T17:26:18Z
_version_ 1796153294326857728