An Integrability Condition for Simple Lie Groups II
It is shown that a simple Lie group G (≠SL₂) can be locally characterised by an integrability condition on an Aut(g) structure on the tangent bundle, where Aut(g) is the automorphism group of the Lie algebra of G. The integrability condition is the vanishing of a torsion tensor of type (1,2). This i...
Збережено в:
Дата: | 2015 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2015
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/147007 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | An Integrability Condition for Simple Lie Groups II / M. Min-Oo // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 6 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-147007 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1470072019-02-13T01:24:37Z An Integrability Condition for Simple Lie Groups II Min-Oo, M. It is shown that a simple Lie group G (≠SL₂) can be locally characterised by an integrability condition on an Aut(g) structure on the tangent bundle, where Aut(g) is the automorphism group of the Lie algebra of G. The integrability condition is the vanishing of a torsion tensor of type (1,2). This is a slight improvement of an earlier result proved in [Min-Oo M., Ruh E.A., in Differential Geometry and Complex Analysis, Springer, Berlin, 1985, 205-211]. 2015 Article An Integrability Condition for Simple Lie Groups II / M. Min-Oo // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 6 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 53C10; 53C30 DOI:10.3842/SIGMA.2015.027 http://dspace.nbuv.gov.ua/handle/123456789/147007 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
It is shown that a simple Lie group G (≠SL₂) can be locally characterised by an integrability condition on an Aut(g) structure on the tangent bundle, where Aut(g) is the automorphism group of the Lie algebra of G. The integrability condition is the vanishing of a torsion tensor of type (1,2). This is a slight improvement of an earlier result proved in [Min-Oo M., Ruh E.A., in Differential Geometry and Complex Analysis, Springer, Berlin, 1985, 205-211]. |
format |
Article |
author |
Min-Oo, M. |
spellingShingle |
Min-Oo, M. An Integrability Condition for Simple Lie Groups II Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Min-Oo, M. |
author_sort |
Min-Oo, M. |
title |
An Integrability Condition for Simple Lie Groups II |
title_short |
An Integrability Condition for Simple Lie Groups II |
title_full |
An Integrability Condition for Simple Lie Groups II |
title_fullStr |
An Integrability Condition for Simple Lie Groups II |
title_full_unstemmed |
An Integrability Condition for Simple Lie Groups II |
title_sort |
integrability condition for simple lie groups ii |
publisher |
Інститут математики НАН України |
publishDate |
2015 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/147007 |
citation_txt |
An Integrability Condition for Simple Lie Groups II / M. Min-Oo // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 6 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT minoom anintegrabilityconditionforsimpleliegroupsii AT minoom integrabilityconditionforsimpleliegroupsii |
first_indexed |
2025-07-11T01:08:14Z |
last_indexed |
2025-07-11T01:08:14Z |
_version_ |
1837310805807202304 |
fulltext |
Symmetry, Integrability and Geometry: Methods and Applications SIGMA 11 (2015), 027, 4 pages
An Integrability Condition for Simple Lie Groups II
Maung MIN-OO
Department of Mathematics & Statistics, McMaster University, Hamilton, Canada
E-mail: minoo@mcmaster.ca
Received December 17, 2014, in final form March 26, 2015; Published online April 01, 2015
http://dx.doi.org/10.3842/SIGMA.2015.027
Abstract. It is shown that a simple Lie group G ( 6= SL2) can be locally characterised by an
integrability condition on an Aut(g) structure on the tangent bundle, where Aut(g) is the
automorphism group of the Lie algebra of G. The integrability condition is the vanishing
of a torsion tensor of type (1, 2). This is a slight improvement of an earlier result proved in
[Min-Oo M., Ruh E.A., in Differential Geometry and Complex Analysis, Springer, Berlin,
1985, 205–211].
Key words: simple Lie groups and algebras; G-structure
2010 Mathematics Subject Classification: 53C10; 53C30
1 Introduction
This is a very short addendum to a paper that I wrote with E.A. Ruh in 1985 [3], where we
characterized a simple Lie group G (6= SL2) by an integrability condition on an Aut(g) structure
on the tangent bundle, where Aut(g) is the automorphism group of the Lie algebra of G. The
condition was on a tensor of type (1, 3). In this paper we derive a slightly improved version
of that result by using a more natural integrability condition involving a tensor of type (1, 2),
namely the “canonical” torsion for the given structure.
The classical theorems of Sophus Lie characterise what we now call Lie groups (locally)
by their Lie algebras, which are vector fields whose Lie brackets are “constant” (structure
constants). Nowadays, geometric structures are usually described by infinitesimal tensorial
objects such as a metric or an almost-complex structure defining what is known as a G-structure
(a reduction of the frame bundle to a subgroup). Our result gives a characterisation of a simple
(local) Lie group 6= SL2) by the torsion of the appropriateG-structure, namely the automorphism
group of its Lie algebra, which in this case is the same as G, up to coverings and connected
components. Our result is different from the classical theorems because it does not hold for
a general Lie group, only for simple Lie groups of rank ≥ 2. The main reason is that we use
the deep result about holonomy groups by Berger [1] and Simons [5]. More precisely, we need
the purely algebraic version proved by Simons [5] about the rigidity of holonomy groups of rank
≥ 2, acting non-transitively on the unit sphere (that is the reason why we have to exclude SL2,
which is of rank one). One can find an independent simple algebraic proof of Simon’s result for
simple Lie groups of rank ≥ 2 in our earlier paper [3].
2 The result
Let M an n-dimensional manifold and g a Lie algebra of the same dimension. An Aut(g)-
structure, in the sense of G-structures is a reduction of the frame bundle of M to the subgroup
Aut(g) ⊂ GL(n;R). Such a structure is determined by a skew-symmetric tensor T : TM ⊗
TM −→ TM of type (1, 2) satisfying the Jacobi identity:
T (X,Y ) + T (Y,X) = 0,
mailto:minoo@mcmaster.ca
http://dx.doi.org/10.3842/SIGMA.2015.027
2 M. Min-Oo
T (X,T (Y,Z)) + T (Y, T (Z,X)) + T (Z, T (X,Y )) = 0. (2.1)
T defines a Lie algebra structure for the tangent space at each point.
The Aut(g)-structure is given by all frames u : g ∼= TpM satisfying
u([A,B]) = T (u(A), u(B))
and G acts through inner automorphisms: ug = u ◦ adg. If u is a moving frame (a local section
of the principal bundle), then we do not assume that the Lie bracket of vector fields [u(A), u(B)]
is the same as u([A,B]) (otherwise we will be just reproving Lie’s original theorems).
For a semi-simple Lie algebra g, the first Lie algebra cohomology group H1(g; ad) with values
in the adjoint representation vanishes and so almost all automorphisms are inner automorphisms,
in the sense that the inner automorphisms form a normal subgroup of finite index. In fact,
H2(g; ad) also vanishes (see [2]) and this is crucial for our proof. A semi-simple real Lie algebra g
has a natural bi-invariant non-degenerate inner product (not necessarily positive-definite) given
by the Killing form 〈X,Y 〉 = −Bg(X,Y ). This defines a (pseudo-)Riemannian metric on M ,
which we shall again denote by 〈 , 〉. Let D denote the Levi-Civita connection of this metric.
In [3], we looked at the following tensor dDT of type (1, 3)
dDT (X,Y, Z) = (DXT )(Y, Z) + (DY T )(Z,X) + (DZT )(X,Y )
and we proved the following result
Theorem 2.1 ([3]). Let g be a semi-simple real Lie algebra different from sl2(C) or any of its
real forms. Then dDT = 0 iff (M, 〈 , 〉) is either locally isometric to a Lie group G (with Lie
algebra g) with its unique (up to a constant factor) bi-invariant metric, or else is flat.
The purpose of this paper is to introduce a more natural integrability condition. First we need
to define “dual” bases {ek} and {ej} for g satisfying 〈ek, ej〉 = δjk (this is standard procedure in
this theory):
Case 1. If g is compact, then the metric 〈 , 〉 is positive definite and we just set ek = ek,
where {ek} is an orthonormal base for the metric.
Case 2. If g is not compact, we split g = k⊕m where the metric 〈 , 〉 is positive-definite on k
(the maximal compact subalgebra) and negative-definite on the vector space m. On k we define
ek = ek, where {ek} is an orthonormal base. On m, we set ej = −ej .
These define (local) frames for the Aut(g)-structure on M .
We now define our integrability tensor τ as follows
τ(X,Y ) =
∑
k
(
T
(
ek, (DXT )
(
Y, ek
))
− T
(
ek, (DY T )
(
X, ek
)))
.
This might look a bit complicated at first sight, but it is a tensor of type (1, 2), so it is more
in line with many other integrability conditions. It is clear that τ is a well defined tensor on M
(independent of the choice of the dual base), given the Aut(g)-structure. The main reason why τ
is the correct tensor is because it is the torsion of the following connection:
Definition 2.2.
∇XY = DXY +AXY,
where
AXY =
∑
k
T
(
ek, (DXT )
(
Y, ek
))
.
An Integrability Condition for Simple Lie Groups II 3
Now here is the key fact about this connection:
Proposition 2.3. T is parallel with respect to the connection ∇, i.e.,
∇T = 0.
Since the (pseudo-)Riemannian metric 〈 , 〉 on M is defined algebraically using only the
Killing form of the Lie algebra structure on each tangent space TpM , given by the tensor T , we
have the following corollaries:
Corollary 2.4. ∇ is a metric connection with torsion τ :
〈AXY,Z〉+ 〈AXZ, Y 〉 = 0.
Corollary 2.5.
τ = 0 ⇔ A = 0 ⇔ DT = 0 ⇔ dDT = 0.
Remark 2.6. In the language of [6] or [4], τ is called the torsion of the Aut(g)-structure, which
is an invariant that depends only on the Aut(g)-structure and ∇ is the explicit connection that
realises this torsion.
So in view of Theorem 2.1, proved in the earlier paper [3], Proposition 2.3 now implies the
main result of this short note:
Theorem 2.7. Let g be a semi-simple real Lie algebra different from sl2(C) or any of its real
forms. Then τ = 0 iff (M, 〈 , 〉) is either locally isometric to a Lie group G (with Lie algebra g)
with its unique (up to a constant factor) bi-invariant metric, or else is flat.
Proof of Proposition 2.3. Let v ∈ TpM , and let us denote for simplicity the the covariant
derivative DvT by T ′. Then by differentiating the Jacobi identity (2.1), we obtain
T (T ′(X,Y ), Z) + T (T ′(Y,Z), X) + T (T ′(Z,X), Y )
+ T ′(T (X,Y ), Z) + T ′(T (Y,Z), X) + T ′(T (Z,X), Y ) = 0.
In the language Lie algebra cohomology, this is simply a cocycle condition on T ′ can simply
be expresses as
dadT
′ = 0,
where dad is the co-boundary operator for two-forms with values in the adjoint representation.
It is well known [2] that H2(g; ad) ∼= 0. Hence
dadT
′ = 0⇒ T ′ = dadA
for some A, where A is a g-valued one-form. i.e. a “gauge transformation” A : TpM → g ∼= TpM .
In fact it can be easily checked that A can be explicitly written as (see [2, p. 90]):
A(X) =
∑
k
T
(
ek, T
′(X, ek)).
This is in fact the “optimal” choice of A given the metric structure, in the sense of Hodge theory,
since A satisfies d?adA = 0, where d?ad is the adjoint of dad with respect to the natural bi-invariant
metric. We have then
T ′(X,Y ) = (dadA)(X,Y ) = T (AX,Y ) + T (X,AY )−A(T (X,Y )),
so
(∇vT )(X,Y ) = (DvT )(X,Y ) +Av(T (X,Y ))− T (AvX,Y )− T (X,AvY )
= T ′(X,Y )− dadA(X,Y ) = 0. �
4 M. Min-Oo
References
[1] Berger M., Sur les groupes d’holonomie homogène des variétés à connexion affine et des variétés rieman-
niennes, Bull. Soc. Math. France 83 (1955), 279–330.
[2] Jacobson N., Lie algebras, Interscience Tracts in Pure and Applied Mathematics, Vol. 10, Interscience
Publishers, New York – London, 1962.
[3] Min-Oo M., Ruh E.A., An integrability condition for simple Lie groups, in Differential Geometry and
Complex Analysis, Springer, Berlin, 1985, 205–211.
[4] Min-Oo M., Almost symmetric spaces, Astérisque 163–164 (1988), 221–246.
[5] Simons J., On the transitivity of holonomy systems, Ann. of Math. 76 (1962), 213–234.
[6] Sternberg S., Lectures on differential geometry, 2nd ed., Chelsea Publishing Co., New York, 1983.
http://dx.doi.org/10.1007/978-3-642-69828-6_15
http://dx.doi.org/10.1007/978-3-642-69828-6_15
http://dx.doi.org/10.2307/1970273
1 Introduction
2 The result
References
|