Cluster Variables on Certain Double Bruhat Cells of Type (u,e) and Monomial Realizations of Crystal Bases of Type A

Let G be a simply connected simple algebraic group over C, B and B− be two opposite Borel subgroups in G and W be the Weyl group. For u, v∈W, it is known that the coordinate ring C[Gu,v] of the double Bruhat cell Gu,v=BuB∩B−vB− is isomorphic to an upper cluster algebra A¯(i)C and the generalized min...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2015
Автори: Kanakubo, Y., Nakashima, T.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2015
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/147010
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Cluster Variables on Certain Double Bruhat Cells of Type (u,e) and Monomial Realizations of Crystal Bases of Type A / Y. Kanakubo, T. Nakashima // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 11 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-147010
record_format dspace
spelling irk-123456789-1470102019-02-13T01:24:47Z Cluster Variables on Certain Double Bruhat Cells of Type (u,e) and Monomial Realizations of Crystal Bases of Type A Kanakubo, Y. Nakashima, T. Let G be a simply connected simple algebraic group over C, B and B− be two opposite Borel subgroups in G and W be the Weyl group. For u, v∈W, it is known that the coordinate ring C[Gu,v] of the double Bruhat cell Gu,v=BuB∩B−vB− is isomorphic to an upper cluster algebra A¯(i)C and the generalized minors {Δ(k;i)} are the cluster variables belonging to a given initial seed in C[Gu,v] [Berenstein A., Fomin S., Zelevinsky A., Duke Math. J. 126 (2005), 1-52]. In the case G=SLr₊₁(C), v=e and some special u∈W, we shall describe the generalized minors {Δ(k;i)} as summations of monomial realizations of certain Demazure crystals. 2015 Article Cluster Variables on Certain Double Bruhat Cells of Type (u,e) and Monomial Realizations of Crystal Bases of Type A / Y. Kanakubo, T. Nakashima // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 11 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 13F60; 81R50; 17B37 DOI:10.3842/SIGMA.2015.033 http://dspace.nbuv.gov.ua/handle/123456789/147010 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Let G be a simply connected simple algebraic group over C, B and B− be two opposite Borel subgroups in G and W be the Weyl group. For u, v∈W, it is known that the coordinate ring C[Gu,v] of the double Bruhat cell Gu,v=BuB∩B−vB− is isomorphic to an upper cluster algebra A¯(i)C and the generalized minors {Δ(k;i)} are the cluster variables belonging to a given initial seed in C[Gu,v] [Berenstein A., Fomin S., Zelevinsky A., Duke Math. J. 126 (2005), 1-52]. In the case G=SLr₊₁(C), v=e and some special u∈W, we shall describe the generalized minors {Δ(k;i)} as summations of monomial realizations of certain Demazure crystals.
format Article
author Kanakubo, Y.
Nakashima, T.
spellingShingle Kanakubo, Y.
Nakashima, T.
Cluster Variables on Certain Double Bruhat Cells of Type (u,e) and Monomial Realizations of Crystal Bases of Type A
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Kanakubo, Y.
Nakashima, T.
author_sort Kanakubo, Y.
title Cluster Variables on Certain Double Bruhat Cells of Type (u,e) and Monomial Realizations of Crystal Bases of Type A
title_short Cluster Variables on Certain Double Bruhat Cells of Type (u,e) and Monomial Realizations of Crystal Bases of Type A
title_full Cluster Variables on Certain Double Bruhat Cells of Type (u,e) and Monomial Realizations of Crystal Bases of Type A
title_fullStr Cluster Variables on Certain Double Bruhat Cells of Type (u,e) and Monomial Realizations of Crystal Bases of Type A
title_full_unstemmed Cluster Variables on Certain Double Bruhat Cells of Type (u,e) and Monomial Realizations of Crystal Bases of Type A
title_sort cluster variables on certain double bruhat cells of type (u,e) and monomial realizations of crystal bases of type a
publisher Інститут математики НАН України
publishDate 2015
url http://dspace.nbuv.gov.ua/handle/123456789/147010
citation_txt Cluster Variables on Certain Double Bruhat Cells of Type (u,e) and Monomial Realizations of Crystal Bases of Type A / Y. Kanakubo, T. Nakashima // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 11 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT kanakuboy clustervariablesoncertaindoublebruhatcellsoftypeueandmonomialrealizationsofcrystalbasesoftypea
AT nakashimat clustervariablesoncertaindoublebruhatcellsoftypeueandmonomialrealizationsofcrystalbasesoftypea
first_indexed 2023-05-20T17:26:18Z
last_indexed 2023-05-20T17:26:18Z
_version_ 1796153294536572928