Cluster Variables on Certain Double Bruhat Cells of Type (u,e) and Monomial Realizations of Crystal Bases of Type A
Let G be a simply connected simple algebraic group over C, B and B− be two opposite Borel subgroups in G and W be the Weyl group. For u, v∈W, it is known that the coordinate ring C[Gu,v] of the double Bruhat cell Gu,v=BuB∩B−vB− is isomorphic to an upper cluster algebra A¯(i)C and the generalized min...
Збережено в:
Дата: | 2015 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2015
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/147010 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Cluster Variables on Certain Double Bruhat Cells of Type (u,e) and Monomial Realizations of Crystal Bases of Type A / Y. Kanakubo, T. Nakashima // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 11 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-147010 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1470102019-02-13T01:24:47Z Cluster Variables on Certain Double Bruhat Cells of Type (u,e) and Monomial Realizations of Crystal Bases of Type A Kanakubo, Y. Nakashima, T. Let G be a simply connected simple algebraic group over C, B and B− be two opposite Borel subgroups in G and W be the Weyl group. For u, v∈W, it is known that the coordinate ring C[Gu,v] of the double Bruhat cell Gu,v=BuB∩B−vB− is isomorphic to an upper cluster algebra A¯(i)C and the generalized minors {Δ(k;i)} are the cluster variables belonging to a given initial seed in C[Gu,v] [Berenstein A., Fomin S., Zelevinsky A., Duke Math. J. 126 (2005), 1-52]. In the case G=SLr₊₁(C), v=e and some special u∈W, we shall describe the generalized minors {Δ(k;i)} as summations of monomial realizations of certain Demazure crystals. 2015 Article Cluster Variables on Certain Double Bruhat Cells of Type (u,e) and Monomial Realizations of Crystal Bases of Type A / Y. Kanakubo, T. Nakashima // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 11 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 13F60; 81R50; 17B37 DOI:10.3842/SIGMA.2015.033 http://dspace.nbuv.gov.ua/handle/123456789/147010 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
Let G be a simply connected simple algebraic group over C, B and B− be two opposite Borel subgroups in G and W be the Weyl group. For u, v∈W, it is known that the coordinate ring C[Gu,v] of the double Bruhat cell Gu,v=BuB∩B−vB− is isomorphic to an upper cluster algebra A¯(i)C and the generalized minors {Δ(k;i)} are the cluster variables belonging to a given initial seed in C[Gu,v] [Berenstein A., Fomin S., Zelevinsky A., Duke Math. J. 126 (2005), 1-52]. In the case G=SLr₊₁(C), v=e and some special u∈W, we shall describe the generalized minors {Δ(k;i)} as summations of monomial realizations of certain Demazure crystals. |
format |
Article |
author |
Kanakubo, Y. Nakashima, T. |
spellingShingle |
Kanakubo, Y. Nakashima, T. Cluster Variables on Certain Double Bruhat Cells of Type (u,e) and Monomial Realizations of Crystal Bases of Type A Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Kanakubo, Y. Nakashima, T. |
author_sort |
Kanakubo, Y. |
title |
Cluster Variables on Certain Double Bruhat Cells of Type (u,e) and Monomial Realizations of Crystal Bases of Type A |
title_short |
Cluster Variables on Certain Double Bruhat Cells of Type (u,e) and Monomial Realizations of Crystal Bases of Type A |
title_full |
Cluster Variables on Certain Double Bruhat Cells of Type (u,e) and Monomial Realizations of Crystal Bases of Type A |
title_fullStr |
Cluster Variables on Certain Double Bruhat Cells of Type (u,e) and Monomial Realizations of Crystal Bases of Type A |
title_full_unstemmed |
Cluster Variables on Certain Double Bruhat Cells of Type (u,e) and Monomial Realizations of Crystal Bases of Type A |
title_sort |
cluster variables on certain double bruhat cells of type (u,e) and monomial realizations of crystal bases of type a |
publisher |
Інститут математики НАН України |
publishDate |
2015 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/147010 |
citation_txt |
Cluster Variables on Certain Double Bruhat Cells of Type (u,e) and Monomial Realizations of Crystal Bases of Type A / Y. Kanakubo, T. Nakashima // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 11 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT kanakuboy clustervariablesoncertaindoublebruhatcellsoftypeueandmonomialrealizationsofcrystalbasesoftypea AT nakashimat clustervariablesoncertaindoublebruhatcellsoftypeueandmonomialrealizationsofcrystalbasesoftypea |
first_indexed |
2023-05-20T17:26:18Z |
last_indexed |
2023-05-20T17:26:18Z |
_version_ |
1796153294536572928 |