Quantum Integrals for a Semi-Infinite q-Boson System with Boundary Interactions
We provide explicit formulas for the quantum integrals of a semi-infinite q-boson system with boundary interactions. These operators and their commutativity are deduced from the Pieri formulas for a q→0 Hall-Littlewood type degeneration of the Macdonald-Koornwinder polynomials.
Збережено в:
Дата: | 2015 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2015
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/147014 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Quantum Integrals for a Semi-Infinite q-Boson System with Boundary Interactions / J.F. van Diejen, E. Emsiz // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 27 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-147014 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1470142019-02-13T01:24:14Z Quantum Integrals for a Semi-Infinite q-Boson System with Boundary Interactions van Diejen, J.F. Emsiz, E. We provide explicit formulas for the quantum integrals of a semi-infinite q-boson system with boundary interactions. These operators and their commutativity are deduced from the Pieri formulas for a q→0 Hall-Littlewood type degeneration of the Macdonald-Koornwinder polynomials. 2015 Article Quantum Integrals for a Semi-Infinite q-Boson System with Boundary Interactions / J.F. van Diejen, E. Emsiz // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 27 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 33D52; 81R50; 81T25; 82B23 DOI:10.3842/SIGMA.2015.037 http://dspace.nbuv.gov.ua/handle/123456789/147014 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We provide explicit formulas for the quantum integrals of a semi-infinite q-boson system with boundary interactions. These operators and their commutativity are deduced from the Pieri formulas for a q→0 Hall-Littlewood type degeneration of the Macdonald-Koornwinder polynomials. |
format |
Article |
author |
van Diejen, J.F. Emsiz, E. |
spellingShingle |
van Diejen, J.F. Emsiz, E. Quantum Integrals for a Semi-Infinite q-Boson System with Boundary Interactions Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
van Diejen, J.F. Emsiz, E. |
author_sort |
van Diejen, J.F. |
title |
Quantum Integrals for a Semi-Infinite q-Boson System with Boundary Interactions |
title_short |
Quantum Integrals for a Semi-Infinite q-Boson System with Boundary Interactions |
title_full |
Quantum Integrals for a Semi-Infinite q-Boson System with Boundary Interactions |
title_fullStr |
Quantum Integrals for a Semi-Infinite q-Boson System with Boundary Interactions |
title_full_unstemmed |
Quantum Integrals for a Semi-Infinite q-Boson System with Boundary Interactions |
title_sort |
quantum integrals for a semi-infinite q-boson system with boundary interactions |
publisher |
Інститут математики НАН України |
publishDate |
2015 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/147014 |
citation_txt |
Quantum Integrals for a Semi-Infinite q-Boson System with Boundary Interactions / J.F. van Diejen, E. Emsiz // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 27 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT vandiejenjf quantumintegralsforasemiinfiniteqbosonsystemwithboundaryinteractions AT emsize quantumintegralsforasemiinfiniteqbosonsystemwithboundaryinteractions |
first_indexed |
2023-05-20T17:26:19Z |
last_indexed |
2023-05-20T17:26:19Z |
_version_ |
1796153294958100480 |