Invariant Classification and Limits of Maximally Superintegrable Systems in 3D
The invariant classification of superintegrable systems is reviewed and utilized to construct singular limits between the systems. It is shown, by construction, that all superintegrable systems on conformally flat, 3D complex Riemannian manifolds can be obtained from singular limits of a generic sys...
Збережено в:
Дата: | 2015 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2015
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/147015 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Invariant Classification and Limits of Maximally Superintegrable Systems in 3D / J.J. Capel, J.M. Kress, S. Post // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 27 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-147015 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1470152019-02-13T01:24:53Z Invariant Classification and Limits of Maximally Superintegrable Systems in 3D Capel, J.J. Kress, J.M. Post, S. The invariant classification of superintegrable systems is reviewed and utilized to construct singular limits between the systems. It is shown, by construction, that all superintegrable systems on conformally flat, 3D complex Riemannian manifolds can be obtained from singular limits of a generic system on the sphere. By using the invariant classification, the limits are geometrically motivated in terms of transformations of roots of the classifying polynomials. 2015 Article Invariant Classification and Limits of Maximally Superintegrable Systems in 3D / J.J. Capel, J.M. Kress, S. Post // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 27 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 33C45; 33D45; 33D80; 81R05; 81R12 DOI:10.3842/SIGMA.2015.038 http://dspace.nbuv.gov.ua/handle/123456789/147015 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
The invariant classification of superintegrable systems is reviewed and utilized to construct singular limits between the systems. It is shown, by construction, that all superintegrable systems on conformally flat, 3D complex Riemannian manifolds can be obtained from singular limits of a generic system on the sphere. By using the invariant classification, the limits are geometrically motivated in terms of transformations of roots of the classifying polynomials. |
format |
Article |
author |
Capel, J.J. Kress, J.M. Post, S. |
spellingShingle |
Capel, J.J. Kress, J.M. Post, S. Invariant Classification and Limits of Maximally Superintegrable Systems in 3D Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Capel, J.J. Kress, J.M. Post, S. |
author_sort |
Capel, J.J. |
title |
Invariant Classification and Limits of Maximally Superintegrable Systems in 3D |
title_short |
Invariant Classification and Limits of Maximally Superintegrable Systems in 3D |
title_full |
Invariant Classification and Limits of Maximally Superintegrable Systems in 3D |
title_fullStr |
Invariant Classification and Limits of Maximally Superintegrable Systems in 3D |
title_full_unstemmed |
Invariant Classification and Limits of Maximally Superintegrable Systems in 3D |
title_sort |
invariant classification and limits of maximally superintegrable systems in 3d |
publisher |
Інститут математики НАН України |
publishDate |
2015 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/147015 |
citation_txt |
Invariant Classification and Limits of Maximally Superintegrable Systems in 3D / J.J. Capel, J.M. Kress, S. Post // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 27 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT capeljj invariantclassificationandlimitsofmaximallysuperintegrablesystemsin3d AT kressjm invariantclassificationandlimitsofmaximallysuperintegrablesystemsin3d AT posts invariantclassificationandlimitsofmaximallysuperintegrablesystemsin3d |
first_indexed |
2023-05-20T17:26:19Z |
last_indexed |
2023-05-20T17:26:19Z |
_version_ |
1796153295062958080 |