Invariant Classification and Limits of Maximally Superintegrable Systems in 3D

The invariant classification of superintegrable systems is reviewed and utilized to construct singular limits between the systems. It is shown, by construction, that all superintegrable systems on conformally flat, 3D complex Riemannian manifolds can be obtained from singular limits of a generic sys...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2015
Автори: Capel, J.J., Kress, J.M., Post, S.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2015
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/147015
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Invariant Classification and Limits of Maximally Superintegrable Systems in 3D / J.J. Capel, J.M. Kress, S. Post // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 27 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-147015
record_format dspace
spelling irk-123456789-1470152019-02-13T01:24:53Z Invariant Classification and Limits of Maximally Superintegrable Systems in 3D Capel, J.J. Kress, J.M. Post, S. The invariant classification of superintegrable systems is reviewed and utilized to construct singular limits between the systems. It is shown, by construction, that all superintegrable systems on conformally flat, 3D complex Riemannian manifolds can be obtained from singular limits of a generic system on the sphere. By using the invariant classification, the limits are geometrically motivated in terms of transformations of roots of the classifying polynomials. 2015 Article Invariant Classification and Limits of Maximally Superintegrable Systems in 3D / J.J. Capel, J.M. Kress, S. Post // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 27 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 33C45; 33D45; 33D80; 81R05; 81R12 DOI:10.3842/SIGMA.2015.038 http://dspace.nbuv.gov.ua/handle/123456789/147015 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description The invariant classification of superintegrable systems is reviewed and utilized to construct singular limits between the systems. It is shown, by construction, that all superintegrable systems on conformally flat, 3D complex Riemannian manifolds can be obtained from singular limits of a generic system on the sphere. By using the invariant classification, the limits are geometrically motivated in terms of transformations of roots of the classifying polynomials.
format Article
author Capel, J.J.
Kress, J.M.
Post, S.
spellingShingle Capel, J.J.
Kress, J.M.
Post, S.
Invariant Classification and Limits of Maximally Superintegrable Systems in 3D
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Capel, J.J.
Kress, J.M.
Post, S.
author_sort Capel, J.J.
title Invariant Classification and Limits of Maximally Superintegrable Systems in 3D
title_short Invariant Classification and Limits of Maximally Superintegrable Systems in 3D
title_full Invariant Classification and Limits of Maximally Superintegrable Systems in 3D
title_fullStr Invariant Classification and Limits of Maximally Superintegrable Systems in 3D
title_full_unstemmed Invariant Classification and Limits of Maximally Superintegrable Systems in 3D
title_sort invariant classification and limits of maximally superintegrable systems in 3d
publisher Інститут математики НАН України
publishDate 2015
url http://dspace.nbuv.gov.ua/handle/123456789/147015
citation_txt Invariant Classification and Limits of Maximally Superintegrable Systems in 3D / J.J. Capel, J.M. Kress, S. Post // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 27 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT capeljj invariantclassificationandlimitsofmaximallysuperintegrablesystemsin3d
AT kressjm invariantclassificationandlimitsofmaximallysuperintegrablesystemsin3d
AT posts invariantclassificationandlimitsofmaximallysuperintegrablesystemsin3d
first_indexed 2023-05-20T17:26:19Z
last_indexed 2023-05-20T17:26:19Z
_version_ 1796153295062958080