2025-02-23T06:59:04-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-147018%22&qt=morelikethis&rows=5
2025-02-23T06:59:04-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-147018%22&qt=morelikethis&rows=5
2025-02-23T06:59:04-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T06:59:04-05:00 DEBUG: Deserialized SOLR response

Skein Modules from Skew Howe Duality and Affine Extensions

We show that we can release the rigidity of the skew Howe duality process for sln knot invariants by rescaling the quantum Weyl group action, and recover skein modules for web-tangles. This skew Howe duality phenomenon can be extended to the affine slm case, corresponding to looking at tangles embed...

Full description

Saved in:
Bibliographic Details
Main Author: Queffelec, H.
Format: Article
Language:English
Published: Інститут математики НАН України 2015
Series:Symmetry, Integrability and Geometry: Methods and Applications
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/147018
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We show that we can release the rigidity of the skew Howe duality process for sln knot invariants by rescaling the quantum Weyl group action, and recover skein modules for web-tangles. This skew Howe duality phenomenon can be extended to the affine slm case, corresponding to looking at tangles embedded in a solid torus. We investigate the relations between the invariants constructed by evaluation representations (and affinization of them) and usual skein modules, and give tools for interpretations of annular skein modules as sub-algebras of intertwiners for particular Uq(sln) representations. The categorification proposed in a joint work with A. Lauda and D. Rose also admits a direct extension in the affine case.