Skein Modules from Skew Howe Duality and Affine Extensions

We show that we can release the rigidity of the skew Howe duality process for sln knot invariants by rescaling the quantum Weyl group action, and recover skein modules for web-tangles. This skew Howe duality phenomenon can be extended to the affine slm case, corresponding to looking at tangles embed...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2015
Автор: Queffelec, H.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2015
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/147018
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Skein Modules from Skew Howe Duality and Affine Extensions / H. Queffelec // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 39 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-147018
record_format dspace
spelling irk-123456789-1470182019-02-13T01:24:48Z Skein Modules from Skew Howe Duality and Affine Extensions Queffelec, H. We show that we can release the rigidity of the skew Howe duality process for sln knot invariants by rescaling the quantum Weyl group action, and recover skein modules for web-tangles. This skew Howe duality phenomenon can be extended to the affine slm case, corresponding to looking at tangles embedded in a solid torus. We investigate the relations between the invariants constructed by evaluation representations (and affinization of them) and usual skein modules, and give tools for interpretations of annular skein modules as sub-algebras of intertwiners for particular Uq(sln) representations. The categorification proposed in a joint work with A. Lauda and D. Rose also admits a direct extension in the affine case. 2015 Article Skein Modules from Skew Howe Duality and Affine Extensions / H. Queffelec // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 39 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 81R50; 17B37; 17B67; 57M25; 57M27 DOI:10.3842/SIGMA.2015.030 http://dspace.nbuv.gov.ua/handle/123456789/147018 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We show that we can release the rigidity of the skew Howe duality process for sln knot invariants by rescaling the quantum Weyl group action, and recover skein modules for web-tangles. This skew Howe duality phenomenon can be extended to the affine slm case, corresponding to looking at tangles embedded in a solid torus. We investigate the relations between the invariants constructed by evaluation representations (and affinization of them) and usual skein modules, and give tools for interpretations of annular skein modules as sub-algebras of intertwiners for particular Uq(sln) representations. The categorification proposed in a joint work with A. Lauda and D. Rose also admits a direct extension in the affine case.
format Article
author Queffelec, H.
spellingShingle Queffelec, H.
Skein Modules from Skew Howe Duality and Affine Extensions
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Queffelec, H.
author_sort Queffelec, H.
title Skein Modules from Skew Howe Duality and Affine Extensions
title_short Skein Modules from Skew Howe Duality and Affine Extensions
title_full Skein Modules from Skew Howe Duality and Affine Extensions
title_fullStr Skein Modules from Skew Howe Duality and Affine Extensions
title_full_unstemmed Skein Modules from Skew Howe Duality and Affine Extensions
title_sort skein modules from skew howe duality and affine extensions
publisher Інститут математики НАН України
publishDate 2015
url http://dspace.nbuv.gov.ua/handle/123456789/147018
citation_txt Skein Modules from Skew Howe Duality and Affine Extensions / H. Queffelec // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 39 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT queffelech skeinmodulesfromskewhowedualityandaffineextensions
first_indexed 2023-05-20T17:26:20Z
last_indexed 2023-05-20T17:26:20Z
_version_ 1796153295378579456