Invariants and Infinitesimal Transformations for Contact Sub-Lorentzian Structures on 3-Dimensional Manifolds
In this article we develop some elementary aspects of a theory of symmetry in sub-Lorentzian geometry. First of all we construct invariants characterizing isometric classes of sub-Lorentzian contact 3 manifolds. Next we characterize vector fields which generate isometric and conformal symmetries in...
Збережено в:
Дата: | 2015 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2015
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/147019 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Invariants and Infinitesimal Transformations for Contact Sub-Lorentzian Structures on 3-Dimensional Manifolds / M. Grochowski, B. Warhurst // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 25 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | In this article we develop some elementary aspects of a theory of symmetry in sub-Lorentzian geometry. First of all we construct invariants characterizing isometric classes of sub-Lorentzian contact 3 manifolds. Next we characterize vector fields which generate isometric and conformal symmetries in general sub-Lorentzian manifolds. We then focus attention back to the case where the underlying manifold is a contact 3 manifold and more specifically when the manifold is also a Lie group and the structure is left-invariant. |
---|