Cyclic Homology and Quantum Orbits

A natural isomorphism between the cyclic object computing the relative cyclic homology of a homogeneous quotient-coalgebra-Galois extension, and the cyclic object computing the cyclic homology of a Galois coalgebra with SAYD coefficients is presented. The isomorphism can be viewed as the cyclic-homo...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2015
Автори: Maszczyk, T., Sütlü, S.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2015
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/147108
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Cyclic Homology and Quantum Orbits / T. Maszczyk, S. Sütlü // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 40 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-147108
record_format dspace
spelling irk-123456789-1471082019-02-14T01:26:45Z Cyclic Homology and Quantum Orbits Maszczyk, T. Sütlü, S. A natural isomorphism between the cyclic object computing the relative cyclic homology of a homogeneous quotient-coalgebra-Galois extension, and the cyclic object computing the cyclic homology of a Galois coalgebra with SAYD coefficients is presented. The isomorphism can be viewed as the cyclic-homological counterpart of the Takeuchi-Galois correspondence between the left coideal subalgebras and the quotient right module coalgebras of a Hopf algebra. A spectral sequence generalizing the classical computation of Hochschild homology of a Hopf algebra to the case of arbitrary homogeneous quotient-coalgebra-Galois extensions is constructed. A Pontryagin type self-duality of the Takeuchi-Galois correspondence is combined with the cyclic duality of Connes in order to obtain dual results on the invariant cyclic homology, with SAYD coefficients, of algebras of invariants in homogeneous quotient-coalgebra-Galois extensions. The relation of this dual result with the Chern character, Frobenius reciprocity, and inertia phenomena in the local Langlands program, the Chen-Ruan-Brylinski-Nistor orbifold cohomology and the Clifford theory is discussed. 2015 Article Cyclic Homology and Quantum Orbits / T. Maszczyk, S. Sütlü // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 40 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 19D55; 57T15; 06A15; 46A20 DOI:10.3842/SIGMA.2015.041 http://dspace.nbuv.gov.ua/handle/123456789/147108 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description A natural isomorphism between the cyclic object computing the relative cyclic homology of a homogeneous quotient-coalgebra-Galois extension, and the cyclic object computing the cyclic homology of a Galois coalgebra with SAYD coefficients is presented. The isomorphism can be viewed as the cyclic-homological counterpart of the Takeuchi-Galois correspondence between the left coideal subalgebras and the quotient right module coalgebras of a Hopf algebra. A spectral sequence generalizing the classical computation of Hochschild homology of a Hopf algebra to the case of arbitrary homogeneous quotient-coalgebra-Galois extensions is constructed. A Pontryagin type self-duality of the Takeuchi-Galois correspondence is combined with the cyclic duality of Connes in order to obtain dual results on the invariant cyclic homology, with SAYD coefficients, of algebras of invariants in homogeneous quotient-coalgebra-Galois extensions. The relation of this dual result with the Chern character, Frobenius reciprocity, and inertia phenomena in the local Langlands program, the Chen-Ruan-Brylinski-Nistor orbifold cohomology and the Clifford theory is discussed.
format Article
author Maszczyk, T.
Sütlü, S.
spellingShingle Maszczyk, T.
Sütlü, S.
Cyclic Homology and Quantum Orbits
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Maszczyk, T.
Sütlü, S.
author_sort Maszczyk, T.
title Cyclic Homology and Quantum Orbits
title_short Cyclic Homology and Quantum Orbits
title_full Cyclic Homology and Quantum Orbits
title_fullStr Cyclic Homology and Quantum Orbits
title_full_unstemmed Cyclic Homology and Quantum Orbits
title_sort cyclic homology and quantum orbits
publisher Інститут математики НАН України
publishDate 2015
url http://dspace.nbuv.gov.ua/handle/123456789/147108
citation_txt Cyclic Homology and Quantum Orbits / T. Maszczyk, S. Sütlü // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 40 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT maszczykt cyclichomologyandquantumorbits
AT sutlus cyclichomologyandquantumorbits
first_indexed 2023-05-20T17:26:36Z
last_indexed 2023-05-20T17:26:36Z
_version_ 1796153297180033024