On the Integrability of Supersymmetric Versions of the Structural Equations for Conformally Parametrized Surfaces
The paper presents the bosonic and fermionic supersymmetric extensions of the structural equations describing conformally parametrized surfaces immersed in a Grasmann superspace, based on the authors' earlier results. A detailed analysis of the symmetry properties of both the classical and supe...
Збережено в:
Дата: | 2015 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2015
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/147112 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | On the Integrability of Supersymmetric Versions of the Structural Equations for Conformally Parametrized Surfaces / S. Bertrand, A.M. Grundland, A.J. Hariton // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 51 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | The paper presents the bosonic and fermionic supersymmetric extensions of the structural equations describing conformally parametrized surfaces immersed in a Grasmann superspace, based on the authors' earlier results. A detailed analysis of the symmetry properties of both the classical and supersymmetric versions of the Gauss-Weingarten equations is performed. A supersymmetric generalization of the conjecture establishing the necessary conditions for a system to be integrable in the sense of soliton theory is formulated and illustrated by the examples of supersymmetric versions of the sine-Gordon equation and the Gauss-Codazzi equations. |
---|