Harmonic Maps into Homogeneous Spaces According to a Darboux Homogeneous Derivative

Our purpose is to use a Darboux homogenous derivative to understand the harmonic maps with values in homogeneous space. We present a characterization of these harmonic maps from the geometry of homogeneous space. Furthermore, our work covers all type of invariant geometry in homogeneous space.

Збережено в:
Бібліографічні деталі
Дата:2015
Автори: Santana, A.J., Stelmastchuk, S.N.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2015
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/147115
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Harmonic Maps into Homogeneous Spaces According to a Darboux Homogeneous Derivative / A.J. Santana, S.N. Stelmastchuk // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 18 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-147115
record_format dspace
spelling irk-123456789-1471152019-02-14T01:23:47Z Harmonic Maps into Homogeneous Spaces According to a Darboux Homogeneous Derivative Santana, A.J. Stelmastchuk, S.N. Our purpose is to use a Darboux homogenous derivative to understand the harmonic maps with values in homogeneous space. We present a characterization of these harmonic maps from the geometry of homogeneous space. Furthermore, our work covers all type of invariant geometry in homogeneous space. 2015 Article Harmonic Maps into Homogeneous Spaces According to a Darboux Homogeneous Derivative / A.J. Santana, S.N. Stelmastchuk // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 18 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 53C43; 53C30; 58E20; 60H30 DOI:10.3842/SIGMA.2015.069 http://dspace.nbuv.gov.ua/handle/123456789/147115 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Our purpose is to use a Darboux homogenous derivative to understand the harmonic maps with values in homogeneous space. We present a characterization of these harmonic maps from the geometry of homogeneous space. Furthermore, our work covers all type of invariant geometry in homogeneous space.
format Article
author Santana, A.J.
Stelmastchuk, S.N.
spellingShingle Santana, A.J.
Stelmastchuk, S.N.
Harmonic Maps into Homogeneous Spaces According to a Darboux Homogeneous Derivative
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Santana, A.J.
Stelmastchuk, S.N.
author_sort Santana, A.J.
title Harmonic Maps into Homogeneous Spaces According to a Darboux Homogeneous Derivative
title_short Harmonic Maps into Homogeneous Spaces According to a Darboux Homogeneous Derivative
title_full Harmonic Maps into Homogeneous Spaces According to a Darboux Homogeneous Derivative
title_fullStr Harmonic Maps into Homogeneous Spaces According to a Darboux Homogeneous Derivative
title_full_unstemmed Harmonic Maps into Homogeneous Spaces According to a Darboux Homogeneous Derivative
title_sort harmonic maps into homogeneous spaces according to a darboux homogeneous derivative
publisher Інститут математики НАН України
publishDate 2015
url http://dspace.nbuv.gov.ua/handle/123456789/147115
citation_txt Harmonic Maps into Homogeneous Spaces According to a Darboux Homogeneous Derivative / A.J. Santana, S.N. Stelmastchuk // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 18 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT santanaaj harmonicmapsintohomogeneousspacesaccordingtoadarbouxhomogeneousderivative
AT stelmastchuksn harmonicmapsintohomogeneousspacesaccordingtoadarbouxhomogeneousderivative
first_indexed 2023-05-20T17:26:37Z
last_indexed 2023-05-20T17:26:37Z
_version_ 1796153297707466752