A Combinatorial Formula for Certain Elements of Upper Cluster Algebras

We develop an elementary formula for certain non-trivial elements of upper cluster algebras. These elements have positive coefficients. We show that when the cluster algebra is acyclic these elements form a basis. Using this formula, we show that each non-acyclic skew-symmetric cluster algebra of ra...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2015
Автори: Lee, K., Li, L., Mills, M.R.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2015
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/147117
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:A Combinatorial Formula for Certain Elements of Upper Cluster Algebras / K. Lee, L. Li, M.R. Mills // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 16 назв. — англ.

Репозиторії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-147117
record_format dspace
spelling irk-123456789-1471172019-02-14T01:23:40Z A Combinatorial Formula for Certain Elements of Upper Cluster Algebras Lee, K. Li, L. Mills, M.R. We develop an elementary formula for certain non-trivial elements of upper cluster algebras. These elements have positive coefficients. We show that when the cluster algebra is acyclic these elements form a basis. Using this formula, we show that each non-acyclic skew-symmetric cluster algebra of rank 3 is properly contained in its upper cluster algebra. 2015 Article A Combinatorial Formula for Certain Elements of Upper Cluster Algebras / K. Lee, L. Li, M.R. Mills // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 16 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 13F60 DOI:10.3842/SIGMA.2015.049 http://dspace.nbuv.gov.ua/handle/123456789/147117 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We develop an elementary formula for certain non-trivial elements of upper cluster algebras. These elements have positive coefficients. We show that when the cluster algebra is acyclic these elements form a basis. Using this formula, we show that each non-acyclic skew-symmetric cluster algebra of rank 3 is properly contained in its upper cluster algebra.
format Article
author Lee, K.
Li, L.
Mills, M.R.
spellingShingle Lee, K.
Li, L.
Mills, M.R.
A Combinatorial Formula for Certain Elements of Upper Cluster Algebras
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Lee, K.
Li, L.
Mills, M.R.
author_sort Lee, K.
title A Combinatorial Formula for Certain Elements of Upper Cluster Algebras
title_short A Combinatorial Formula for Certain Elements of Upper Cluster Algebras
title_full A Combinatorial Formula for Certain Elements of Upper Cluster Algebras
title_fullStr A Combinatorial Formula for Certain Elements of Upper Cluster Algebras
title_full_unstemmed A Combinatorial Formula for Certain Elements of Upper Cluster Algebras
title_sort combinatorial formula for certain elements of upper cluster algebras
publisher Інститут математики НАН України
publishDate 2015
url http://dspace.nbuv.gov.ua/handle/123456789/147117
citation_txt A Combinatorial Formula for Certain Elements of Upper Cluster Algebras / K. Lee, L. Li, M.R. Mills // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 16 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT leek acombinatorialformulaforcertainelementsofupperclusteralgebras
AT lil acombinatorialformulaforcertainelementsofupperclusteralgebras
AT millsmr acombinatorialformulaforcertainelementsofupperclusteralgebras
AT leek combinatorialformulaforcertainelementsofupperclusteralgebras
AT lil combinatorialformulaforcertainelementsofupperclusteralgebras
AT millsmr combinatorialformulaforcertainelementsofupperclusteralgebras
first_indexed 2023-05-20T17:26:37Z
last_indexed 2023-05-20T17:26:37Z
_version_ 1796153297918230528