A Combinatorial Formula for Certain Elements of Upper Cluster Algebras
We develop an elementary formula for certain non-trivial elements of upper cluster algebras. These elements have positive coefficients. We show that when the cluster algebra is acyclic these elements form a basis. Using this formula, we show that each non-acyclic skew-symmetric cluster algebra of ra...
Збережено в:
Дата: | 2015 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2015
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/147117 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | A Combinatorial Formula for Certain Elements of Upper Cluster Algebras / K. Lee, L. Li, M.R. Mills // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 16 назв. — англ. |
Репозиторії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-147117 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1471172019-02-14T01:23:40Z A Combinatorial Formula for Certain Elements of Upper Cluster Algebras Lee, K. Li, L. Mills, M.R. We develop an elementary formula for certain non-trivial elements of upper cluster algebras. These elements have positive coefficients. We show that when the cluster algebra is acyclic these elements form a basis. Using this formula, we show that each non-acyclic skew-symmetric cluster algebra of rank 3 is properly contained in its upper cluster algebra. 2015 Article A Combinatorial Formula for Certain Elements of Upper Cluster Algebras / K. Lee, L. Li, M.R. Mills // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 16 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 13F60 DOI:10.3842/SIGMA.2015.049 http://dspace.nbuv.gov.ua/handle/123456789/147117 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We develop an elementary formula for certain non-trivial elements of upper cluster algebras. These elements have positive coefficients. We show that when the cluster algebra is acyclic these elements form a basis. Using this formula, we show that each non-acyclic skew-symmetric cluster algebra of rank 3 is properly contained in its upper cluster algebra. |
format |
Article |
author |
Lee, K. Li, L. Mills, M.R. |
spellingShingle |
Lee, K. Li, L. Mills, M.R. A Combinatorial Formula for Certain Elements of Upper Cluster Algebras Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Lee, K. Li, L. Mills, M.R. |
author_sort |
Lee, K. |
title |
A Combinatorial Formula for Certain Elements of Upper Cluster Algebras |
title_short |
A Combinatorial Formula for Certain Elements of Upper Cluster Algebras |
title_full |
A Combinatorial Formula for Certain Elements of Upper Cluster Algebras |
title_fullStr |
A Combinatorial Formula for Certain Elements of Upper Cluster Algebras |
title_full_unstemmed |
A Combinatorial Formula for Certain Elements of Upper Cluster Algebras |
title_sort |
combinatorial formula for certain elements of upper cluster algebras |
publisher |
Інститут математики НАН України |
publishDate |
2015 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/147117 |
citation_txt |
A Combinatorial Formula for Certain Elements of Upper Cluster Algebras / K. Lee, L. Li, M.R. Mills // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 16 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT leek acombinatorialformulaforcertainelementsofupperclusteralgebras AT lil acombinatorialformulaforcertainelementsofupperclusteralgebras AT millsmr acombinatorialformulaforcertainelementsofupperclusteralgebras AT leek combinatorialformulaforcertainelementsofupperclusteralgebras AT lil combinatorialformulaforcertainelementsofupperclusteralgebras AT millsmr combinatorialformulaforcertainelementsofupperclusteralgebras |
first_indexed |
2023-05-20T17:26:37Z |
last_indexed |
2023-05-20T17:26:37Z |
_version_ |
1796153297918230528 |