Constructing Involutive Tableaux with Guillemin Normal Form

Involutivity is the algebraic property that guarantees solutions to an analytic and torsion-free exterior differential system or partial differential equation via the Cartan-Kähler theorem. Guillemin normal form establishes that the prolonged symbol of an involutive system admits a commutativity pro...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2015
Автор: Smith, A.D.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2015
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/147123
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Constructing Involutive Tableaux with Guillemin Normal Form / A.D. Smith // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 9 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-147123
record_format dspace
spelling irk-123456789-1471232019-02-14T01:24:32Z Constructing Involutive Tableaux with Guillemin Normal Form Smith, A.D. Involutivity is the algebraic property that guarantees solutions to an analytic and torsion-free exterior differential system or partial differential equation via the Cartan-Kähler theorem. Guillemin normal form establishes that the prolonged symbol of an involutive system admits a commutativity property on certain subspaces of the prolonged tableau. This article examines Guillemin normal form in detail, aiming at a more systematic approach to classifying involutive systems. The main result is an explicit quadratic condition for involutivity of the type suggested but not completed in Chapter IV, § 5 of the book Exterior Differential Systems by Bryant, Chern, Gardner, Goldschmidt, and Griffiths. This condition enhances Guillemin normal form and characterizes involutive tableaux. 2015 Article Constructing Involutive Tableaux with Guillemin Normal Form / A.D. Smith // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 9 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 58A15; 58H10 DOI:10.3842/SIGMA.2015.053 http://dspace.nbuv.gov.ua/handle/123456789/147123 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Involutivity is the algebraic property that guarantees solutions to an analytic and torsion-free exterior differential system or partial differential equation via the Cartan-Kähler theorem. Guillemin normal form establishes that the prolonged symbol of an involutive system admits a commutativity property on certain subspaces of the prolonged tableau. This article examines Guillemin normal form in detail, aiming at a more systematic approach to classifying involutive systems. The main result is an explicit quadratic condition for involutivity of the type suggested but not completed in Chapter IV, § 5 of the book Exterior Differential Systems by Bryant, Chern, Gardner, Goldschmidt, and Griffiths. This condition enhances Guillemin normal form and characterizes involutive tableaux.
format Article
author Smith, A.D.
spellingShingle Smith, A.D.
Constructing Involutive Tableaux with Guillemin Normal Form
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Smith, A.D.
author_sort Smith, A.D.
title Constructing Involutive Tableaux with Guillemin Normal Form
title_short Constructing Involutive Tableaux with Guillemin Normal Form
title_full Constructing Involutive Tableaux with Guillemin Normal Form
title_fullStr Constructing Involutive Tableaux with Guillemin Normal Form
title_full_unstemmed Constructing Involutive Tableaux with Guillemin Normal Form
title_sort constructing involutive tableaux with guillemin normal form
publisher Інститут математики НАН України
publishDate 2015
url http://dspace.nbuv.gov.ua/handle/123456789/147123
citation_txt Constructing Involutive Tableaux with Guillemin Normal Form / A.D. Smith // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 9 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT smithad constructinginvolutivetableauxwithguilleminnormalform
first_indexed 2023-05-20T17:26:38Z
last_indexed 2023-05-20T17:26:38Z
_version_ 1796153298447761408