2025-02-23T05:45:22-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-147124%22&qt=morelikethis&rows=5
2025-02-23T05:45:22-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-147124%22&qt=morelikethis&rows=5
2025-02-23T05:45:22-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T05:45:22-05:00 DEBUG: Deserialized SOLR response
Eigenvalue Estimates of the spinc Dirac Operator and Harmonic Forms on Kähler-Einstein Manifolds
We establish a lower bound for the eigenvalues of the Dirac operator defined on a compact Kähler-Einstein manifold of positive scalar curvature and endowed with particular spinc structures. The limiting case is characterized by the existence of Kählerian Killing spinc spinors in a certain subbundle...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Інститут математики НАН України
2015
|
Series: | Symmetry, Integrability and Geometry: Methods and Applications |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/147124 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We establish a lower bound for the eigenvalues of the Dirac operator defined on a compact Kähler-Einstein manifold of positive scalar curvature and endowed with particular spinc structures. The limiting case is characterized by the existence of Kählerian Killing spinc spinors in a certain subbundle of the spinor bundle. Moreover, we show that the Clifford multiplication between an effective harmonic form and a Kählerian Killing spinc spinor field vanishes. This extends to the spinc case the result of A. Moroianu stating that, on a compact Kähler-Einstein manifold of complex dimension 4ℓ+3 carrying a complex contact structure, the Clifford multiplication between an effective harmonic form and a Kählerian Killing spinor is zero. |
---|