2025-02-22T21:42:16-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-147126%22&qt=morelikethis&rows=5
2025-02-22T21:42:16-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-147126%22&qt=morelikethis&rows=5
2025-02-22T21:42:16-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-22T21:42:16-05:00 DEBUG: Deserialized SOLR response
From Polygons to Ultradiscrete Painlevé Equations
The rays of tropical genus one curves are constrained in a way that defines a bounded polygon. When we relax this constraint, the resulting curves do not close, giving rise to a system of spiraling polygons. The piecewise linear transformations that preserve the forms of those rays form tropical rat...
Saved in:
Main Authors: | Ormerod, C.M., Yamada, Y. |
---|---|
Format: | Article |
Language: | English |
Published: |
Інститут математики НАН України
2015
|
Series: | Symmetry, Integrability and Geometry: Methods and Applications |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/147126 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
2025-02-22T21:42:16-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&rows=40&rows=5&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-147126%22&qt=morelikethis
2025-02-22T21:42:16-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&rows=40&rows=5&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-147126%22&qt=morelikethis
2025-02-22T21:42:16-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-22T21:42:16-05:00 DEBUG: Deserialized SOLR response
Similar Items
-
Ultradiscrete Painlevé VI with Parity Variables
by: Takemura, K., et al.
Published: (2013) -
A Class of Special Solutions for the Ultradiscrete Painlevé II Equation
by: Isojima, Sh., et al.
Published: (2011) -
The Lattice Structure of Connection Preserving Deformations for q-Painlevé Equations I
by: Ormerod, C.M.
Published: (2011) -
Exact Solutions with Two Parameters for an Ultradiscrete Painlevé Equation of Type A₆⁽¹⁾
by: Murata, M.
Published: (2011) -
Construction of a Lax Pair for the E₆⁽¹⁾ q-Painlevé System
by: Witte, N.S., et al.
Published: (2012)