Differential Galois Theory and Lie Symmetries
We study the interplay between the differential Galois group and the Lie algebra of infinitesimal symmetries of systems of linear differential equations. We show that some symmetries can be seen as solutions of a hierarchy of linear differential systems. We show that the existence of rational symmet...
Збережено в:
Дата: | 2015 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2015
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/147127 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Differential Galois Theory and Lie Symmetries / D. Blázquez-Sanz, J.J. Morales-Ruiz, Jacques-Arthur Weil // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 22 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-147127 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1471272019-02-14T01:26:28Z Differential Galois Theory and Lie Symmetries Blázquez-Sanz, D. Morales-Ruiz, J.J. Jacques-Arthur Weil We study the interplay between the differential Galois group and the Lie algebra of infinitesimal symmetries of systems of linear differential equations. We show that some symmetries can be seen as solutions of a hierarchy of linear differential systems. We show that the existence of rational symmetries constrains the differential Galois group in the system in a way that depends of the Maclaurin series of the symmetry along the zero solution. 2015 Article Differential Galois Theory and Lie Symmetries / D. Blázquez-Sanz, J.J. Morales-Ruiz, Jacques-Arthur Weil // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 22 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 12H05; 34M15; 34A26 DOI:10.3842/SIGMA.2015.092 http://dspace.nbuv.gov.ua/handle/123456789/147127 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We study the interplay between the differential Galois group and the Lie algebra of infinitesimal symmetries of systems of linear differential equations. We show that some symmetries can be seen as solutions of a hierarchy of linear differential systems. We show that the existence of rational symmetries constrains the differential Galois group in the system in a way that depends of the Maclaurin series of the symmetry along the zero solution. |
format |
Article |
author |
Blázquez-Sanz, D. Morales-Ruiz, J.J. Jacques-Arthur Weil |
spellingShingle |
Blázquez-Sanz, D. Morales-Ruiz, J.J. Jacques-Arthur Weil Differential Galois Theory and Lie Symmetries Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Blázquez-Sanz, D. Morales-Ruiz, J.J. Jacques-Arthur Weil |
author_sort |
Blázquez-Sanz, D. |
title |
Differential Galois Theory and Lie Symmetries |
title_short |
Differential Galois Theory and Lie Symmetries |
title_full |
Differential Galois Theory and Lie Symmetries |
title_fullStr |
Differential Galois Theory and Lie Symmetries |
title_full_unstemmed |
Differential Galois Theory and Lie Symmetries |
title_sort |
differential galois theory and lie symmetries |
publisher |
Інститут математики НАН України |
publishDate |
2015 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/147127 |
citation_txt |
Differential Galois Theory and Lie Symmetries / D. Blázquez-Sanz, J.J. Morales-Ruiz, Jacques-Arthur Weil // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 22 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT blazquezsanzd differentialgaloistheoryandliesymmetries AT moralesruizjj differentialgaloistheoryandliesymmetries AT jacquesarthurweil differentialgaloistheoryandliesymmetries |
first_indexed |
2023-05-20T17:26:39Z |
last_indexed |
2023-05-20T17:26:39Z |
_version_ |
1796153309816422400 |