Racah Polynomials and Recoupling Schemes of su(1,1)

The connection between the recoupling scheme of four copies of su(1,1), the generic superintegrable system on the 3 sphere, and bivariate Racah polynomials is identified. The Racah polynomials are presented as connection coefficients between eigenfunctions separated in different spherical coordinate...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2015
Автор: Post, S.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2015
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/147128
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Racah Polynomials and Recoupling Schemes of su(1,1) / S. Post // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 21 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-147128
record_format dspace
spelling irk-123456789-1471282019-02-14T01:24:07Z Racah Polynomials and Recoupling Schemes of su(1,1) Post, S. The connection between the recoupling scheme of four copies of su(1,1), the generic superintegrable system on the 3 sphere, and bivariate Racah polynomials is identified. The Racah polynomials are presented as connection coefficients between eigenfunctions separated in different spherical coordinate systems and equivalently as different irreducible decompositions of the tensor product representations. As a consequence of the model, an extension of the quadratic algebra QR(3) is given. It is shown that this algebra closes only with the inclusion of an additional shift operator, beyond the eigenvalue operators for the bivariate Racah polynomials, whose polynomial eigenfunctions are determined. The duality between the variables and the degrees, and hence the bispectrality of the polynomials, is interpreted in terms of expansion coefficients of the separated solutions. 2015 Article Racah Polynomials and Recoupling Schemes of su(1,1) / S. Post // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 21 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 33C45; 33D45; 33D80; 81R05; 81R12 DOI:10.3842/SIGMA.2015.057 http://dspace.nbuv.gov.ua/handle/123456789/147128 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description The connection between the recoupling scheme of four copies of su(1,1), the generic superintegrable system on the 3 sphere, and bivariate Racah polynomials is identified. The Racah polynomials are presented as connection coefficients between eigenfunctions separated in different spherical coordinate systems and equivalently as different irreducible decompositions of the tensor product representations. As a consequence of the model, an extension of the quadratic algebra QR(3) is given. It is shown that this algebra closes only with the inclusion of an additional shift operator, beyond the eigenvalue operators for the bivariate Racah polynomials, whose polynomial eigenfunctions are determined. The duality between the variables and the degrees, and hence the bispectrality of the polynomials, is interpreted in terms of expansion coefficients of the separated solutions.
format Article
author Post, S.
spellingShingle Post, S.
Racah Polynomials and Recoupling Schemes of su(1,1)
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Post, S.
author_sort Post, S.
title Racah Polynomials and Recoupling Schemes of su(1,1)
title_short Racah Polynomials and Recoupling Schemes of su(1,1)
title_full Racah Polynomials and Recoupling Schemes of su(1,1)
title_fullStr Racah Polynomials and Recoupling Schemes of su(1,1)
title_full_unstemmed Racah Polynomials and Recoupling Schemes of su(1,1)
title_sort racah polynomials and recoupling schemes of su(1,1)
publisher Інститут математики НАН України
publishDate 2015
url http://dspace.nbuv.gov.ua/handle/123456789/147128
citation_txt Racah Polynomials and Recoupling Schemes of su(1,1) / S. Post // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 21 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT posts racahpolynomialsandrecouplingschemesofsu11
first_indexed 2023-05-20T17:26:39Z
last_indexed 2023-05-20T17:26:39Z
_version_ 1796153298869288960