Confluent Chains of DBT: Enlarged Shape Invariance and New Orthogonal Polynomials
We construct rational extensions of the Darboux-Pöschl-Teller and isotonic potentials via two-step confluent Darboux transformations. The former are strictly isospectral to the initial potential, whereas the latter are only quasi-isospectral. Both are associated to new families of orthogonal polynom...
Збережено в:
Дата: | 2015 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2015
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/147132 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Confluent Chains of DBT: Enlarged Shape Invariance and New Orthogonal Polynomials / Y. Grandati, C. Quesne // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 51 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | We construct rational extensions of the Darboux-Pöschl-Teller and isotonic potentials via two-step confluent Darboux transformations. The former are strictly isospectral to the initial potential, whereas the latter are only quasi-isospectral. Both are associated to new families of orthogonal polynomials, which, in the first case, depend on a continuous parameter. We also prove that these extended potentials possess an enlarged shape invariance property. |
---|