Topological Monodromy of an Integrable Heisenberg Spin Chain
We investigate topological properties of a completely integrable system on S²×S²×S² which was recently shown to have a Lagrangian fiber diffeomorphic to RP³ not displaceable by a Hamiltonian isotopy [Oakley J., Ph.D. Thesis, University of Georgia, 2014]. This system can be viewed as integrating the...
Збережено в:
Дата: | 2015 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2015
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/147133 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Topological Monodromy of an Integrable Heisenberg Spin Chain / J. Lane // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 22 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | We investigate topological properties of a completely integrable system on S²×S²×S² which was recently shown to have a Lagrangian fiber diffeomorphic to RP³ not displaceable by a Hamiltonian isotopy [Oakley J., Ph.D. Thesis, University of Georgia, 2014]. This system can be viewed as integrating the determinant, or alternatively, as integrating a classical Heisenberg spin chain. We show that the system has non-trivial topological monodromy and relate this to the geometric interpretation of its integrals. |
---|