Topological Monodromy of an Integrable Heisenberg Spin Chain
We investigate topological properties of a completely integrable system on S²×S²×S² which was recently shown to have a Lagrangian fiber diffeomorphic to RP³ not displaceable by a Hamiltonian isotopy [Oakley J., Ph.D. Thesis, University of Georgia, 2014]. This system can be viewed as integrating the...
Gespeichert in:
Datum: | 2015 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут математики НАН України
2015
|
Schriftenreihe: | Symmetry, Integrability and Geometry: Methods and Applications |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/147133 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Topological Monodromy of an Integrable Heisenberg Spin Chain / J. Lane // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 22 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineZusammenfassung: | We investigate topological properties of a completely integrable system on S²×S²×S² which was recently shown to have a Lagrangian fiber diffeomorphic to RP³ not displaceable by a Hamiltonian isotopy [Oakley J., Ph.D. Thesis, University of Georgia, 2014]. This system can be viewed as integrating the determinant, or alternatively, as integrating a classical Heisenberg spin chain. We show that the system has non-trivial topological monodromy and relate this to the geometric interpretation of its integrals. |
---|