Topological Monodromy of an Integrable Heisenberg Spin Chain

We investigate topological properties of a completely integrable system on S²×S²×S² which was recently shown to have a Lagrangian fiber diffeomorphic to RP³ not displaceable by a Hamiltonian isotopy [Oakley J., Ph.D. Thesis, University of Georgia, 2014]. This system can be viewed as integrating the...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2015
Автор: Lane, J.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2015
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/147133
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Topological Monodromy of an Integrable Heisenberg Spin Chain / J. Lane // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 22 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:We investigate topological properties of a completely integrable system on S²×S²×S² which was recently shown to have a Lagrangian fiber diffeomorphic to RP³ not displaceable by a Hamiltonian isotopy [Oakley J., Ph.D. Thesis, University of Georgia, 2014]. This system can be viewed as integrating the determinant, or alternatively, as integrating a classical Heisenberg spin chain. We show that the system has non-trivial topological monodromy and relate this to the geometric interpretation of its integrals.