Topological Monodromy of an Integrable Heisenberg Spin Chain

We investigate topological properties of a completely integrable system on S²×S²×S² which was recently shown to have a Lagrangian fiber diffeomorphic to RP³ not displaceable by a Hamiltonian isotopy [Oakley J., Ph.D. Thesis, University of Georgia, 2014]. This system can be viewed as integrating the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2015
1. Verfasser: Lane, J.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2015
Schriftenreihe:Symmetry, Integrability and Geometry: Methods and Applications
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/147133
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Topological Monodromy of an Integrable Heisenberg Spin Chain / J. Lane // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 22 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:We investigate topological properties of a completely integrable system on S²×S²×S² which was recently shown to have a Lagrangian fiber diffeomorphic to RP³ not displaceable by a Hamiltonian isotopy [Oakley J., Ph.D. Thesis, University of Georgia, 2014]. This system can be viewed as integrating the determinant, or alternatively, as integrating a classical Heisenberg spin chain. We show that the system has non-trivial topological monodromy and relate this to the geometric interpretation of its integrals.