2025-02-23T12:25:40-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-147134%22&qt=morelikethis&rows=5
2025-02-23T12:25:40-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-147134%22&qt=morelikethis&rows=5
2025-02-23T12:25:40-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T12:25:40-05:00 DEBUG: Deserialized SOLR response

GL(3)-Based Quantum Integrable Composite Models. I. Bethe Vectors

We consider a composite generalized quantum integrable model solvable by the nested algebraic Bethe ansatz. Using explicit formulas of the action of the monodromy matrix elements onto Bethe vectors in the GL(3)-based quantum integrable models we prove a formula for the Bethe vectors of composite mod...

Full description

Saved in:
Bibliographic Details
Main Authors: Pakuliak, S., Ragoucy, E., Slavnov, N.A.
Format: Article
Language:English
Published: Інститут математики НАН України 2015
Series:Symmetry, Integrability and Geometry: Methods and Applications
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/147134
Tags: Add Tag
No Tags, Be the first to tag this record!
id irk-123456789-147134
record_format dspace
spelling irk-123456789-1471342019-02-14T01:23:28Z GL(3)-Based Quantum Integrable Composite Models. I. Bethe Vectors Pakuliak, S. Ragoucy, E. Slavnov, N.A. We consider a composite generalized quantum integrable model solvable by the nested algebraic Bethe ansatz. Using explicit formulas of the action of the monodromy matrix elements onto Bethe vectors in the GL(3)-based quantum integrable models we prove a formula for the Bethe vectors of composite model. We show that this representation is a particular case of general coproduct property of the weight functions (Bethe vectors) found in the theory of the deformed Knizhnik-Zamolodchikov equation. 2015 Article GL(3)-Based Quantum Integrable Composite Models. I. Bethe Vectors / S. Pakuliak, E. Ragoucy, N.A. Slavnov // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 16 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 17B37; 81R50 DOI:10.3842/SIGMA.2015.063 http://dspace.nbuv.gov.ua/handle/123456789/147134 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We consider a composite generalized quantum integrable model solvable by the nested algebraic Bethe ansatz. Using explicit formulas of the action of the monodromy matrix elements onto Bethe vectors in the GL(3)-based quantum integrable models we prove a formula for the Bethe vectors of composite model. We show that this representation is a particular case of general coproduct property of the weight functions (Bethe vectors) found in the theory of the deformed Knizhnik-Zamolodchikov equation.
format Article
author Pakuliak, S.
Ragoucy, E.
Slavnov, N.A.
spellingShingle Pakuliak, S.
Ragoucy, E.
Slavnov, N.A.
GL(3)-Based Quantum Integrable Composite Models. I. Bethe Vectors
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Pakuliak, S.
Ragoucy, E.
Slavnov, N.A.
author_sort Pakuliak, S.
title GL(3)-Based Quantum Integrable Composite Models. I. Bethe Vectors
title_short GL(3)-Based Quantum Integrable Composite Models. I. Bethe Vectors
title_full GL(3)-Based Quantum Integrable Composite Models. I. Bethe Vectors
title_fullStr GL(3)-Based Quantum Integrable Composite Models. I. Bethe Vectors
title_full_unstemmed GL(3)-Based Quantum Integrable Composite Models. I. Bethe Vectors
title_sort gl(3)-based quantum integrable composite models. i. bethe vectors
publisher Інститут математики НАН України
publishDate 2015
url http://dspace.nbuv.gov.ua/handle/123456789/147134
citation_txt GL(3)-Based Quantum Integrable Composite Models. I. Bethe Vectors / S. Pakuliak, E. Ragoucy, N.A. Slavnov // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 16 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT pakuliaks gl3basedquantumintegrablecompositemodelsibethevectors
AT ragoucye gl3basedquantumintegrablecompositemodelsibethevectors
AT slavnovna gl3basedquantumintegrablecompositemodelsibethevectors
first_indexed 2023-05-20T17:26:40Z
last_indexed 2023-05-20T17:26:40Z
_version_ 1796153299502628864