2025-02-23T12:25:40-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-147134%22&qt=morelikethis&rows=5
2025-02-23T12:25:40-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-147134%22&qt=morelikethis&rows=5
2025-02-23T12:25:40-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T12:25:40-05:00 DEBUG: Deserialized SOLR response
GL(3)-Based Quantum Integrable Composite Models. I. Bethe Vectors
We consider a composite generalized quantum integrable model solvable by the nested algebraic Bethe ansatz. Using explicit formulas of the action of the monodromy matrix elements onto Bethe vectors in the GL(3)-based quantum integrable models we prove a formula for the Bethe vectors of composite mod...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Інститут математики НАН України
2015
|
Series: | Symmetry, Integrability and Geometry: Methods and Applications |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/147134 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
irk-123456789-147134 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1471342019-02-14T01:23:28Z GL(3)-Based Quantum Integrable Composite Models. I. Bethe Vectors Pakuliak, S. Ragoucy, E. Slavnov, N.A. We consider a composite generalized quantum integrable model solvable by the nested algebraic Bethe ansatz. Using explicit formulas of the action of the monodromy matrix elements onto Bethe vectors in the GL(3)-based quantum integrable models we prove a formula for the Bethe vectors of composite model. We show that this representation is a particular case of general coproduct property of the weight functions (Bethe vectors) found in the theory of the deformed Knizhnik-Zamolodchikov equation. 2015 Article GL(3)-Based Quantum Integrable Composite Models. I. Bethe Vectors / S. Pakuliak, E. Ragoucy, N.A. Slavnov // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 16 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 17B37; 81R50 DOI:10.3842/SIGMA.2015.063 http://dspace.nbuv.gov.ua/handle/123456789/147134 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We consider a composite generalized quantum integrable model solvable by the nested algebraic Bethe ansatz. Using explicit formulas of the action of the monodromy matrix elements onto Bethe vectors in the GL(3)-based quantum integrable models we prove a formula for the Bethe vectors of composite model. We show that this representation is a particular case of general coproduct property of the weight functions (Bethe vectors) found in the theory of the deformed Knizhnik-Zamolodchikov equation. |
format |
Article |
author |
Pakuliak, S. Ragoucy, E. Slavnov, N.A. |
spellingShingle |
Pakuliak, S. Ragoucy, E. Slavnov, N.A. GL(3)-Based Quantum Integrable Composite Models. I. Bethe Vectors Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Pakuliak, S. Ragoucy, E. Slavnov, N.A. |
author_sort |
Pakuliak, S. |
title |
GL(3)-Based Quantum Integrable Composite Models. I. Bethe Vectors |
title_short |
GL(3)-Based Quantum Integrable Composite Models. I. Bethe Vectors |
title_full |
GL(3)-Based Quantum Integrable Composite Models. I. Bethe Vectors |
title_fullStr |
GL(3)-Based Quantum Integrable Composite Models. I. Bethe Vectors |
title_full_unstemmed |
GL(3)-Based Quantum Integrable Composite Models. I. Bethe Vectors |
title_sort |
gl(3)-based quantum integrable composite models. i. bethe vectors |
publisher |
Інститут математики НАН України |
publishDate |
2015 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/147134 |
citation_txt |
GL(3)-Based Quantum Integrable Composite Models. I. Bethe Vectors / S. Pakuliak, E. Ragoucy, N.A. Slavnov // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 16 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT pakuliaks gl3basedquantumintegrablecompositemodelsibethevectors AT ragoucye gl3basedquantumintegrablecompositemodelsibethevectors AT slavnovna gl3basedquantumintegrablecompositemodelsibethevectors |
first_indexed |
2023-05-20T17:26:40Z |
last_indexed |
2023-05-20T17:26:40Z |
_version_ |
1796153299502628864 |