GL(3) -Based Quantum Integrable Composite Models. II. Form Factors of Local Operators
We study integrable models solvable by the nested algebraic Bethe ansatz and possessing the GL(3)-invariant R-matrix. We consider a composite model where the total monodromy matrix of the model is presented as a product of two partial monodromy matrices. Assuming that the last ones can be expanded i...
Збережено в:
Дата: | 2015 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2015
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/147135 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | GL(3) -Based Quantum Integrable Composite Models. II. Form Factors of Local Operators / S. Pakuliak, E. Ragoucy, N.A. Slavnov // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 39 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-147135 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1471352019-02-14T01:25:15Z GL(3) -Based Quantum Integrable Composite Models. II. Form Factors of Local Operators Pakuliak, S. Ragoucy, E. Slavnov, N.A. We study integrable models solvable by the nested algebraic Bethe ansatz and possessing the GL(3)-invariant R-matrix. We consider a composite model where the total monodromy matrix of the model is presented as a product of two partial monodromy matrices. Assuming that the last ones can be expanded into series with respect to the inverse spectral parameter we calculate matrix elements of the local operators in the basis of the transfer matrix eigenstates. We obtain determinant representations for these matrix elements. Thus, we solve the inverse scattering problem in a weak sense. 2015 Article GL(3) -Based Quantum Integrable Composite Models. II. Form Factors of Local Operators / S. Pakuliak, E. Ragoucy, N.A. Slavnov // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 39 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 17B37; 81R50 DOI:10.3842/SIGMA.2015.64 http://dspace.nbuv.gov.ua/handle/123456789/147135 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We study integrable models solvable by the nested algebraic Bethe ansatz and possessing the GL(3)-invariant R-matrix. We consider a composite model where the total monodromy matrix of the model is presented as a product of two partial monodromy matrices. Assuming that the last ones can be expanded into series with respect to the inverse spectral parameter we calculate matrix elements of the local operators in the basis of the transfer matrix eigenstates. We obtain determinant representations for these matrix elements. Thus, we solve the inverse scattering problem in a weak sense. |
format |
Article |
author |
Pakuliak, S. Ragoucy, E. Slavnov, N.A. |
spellingShingle |
Pakuliak, S. Ragoucy, E. Slavnov, N.A. GL(3) -Based Quantum Integrable Composite Models. II. Form Factors of Local Operators Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Pakuliak, S. Ragoucy, E. Slavnov, N.A. |
author_sort |
Pakuliak, S. |
title |
GL(3) -Based Quantum Integrable Composite Models. II. Form Factors of Local Operators |
title_short |
GL(3) -Based Quantum Integrable Composite Models. II. Form Factors of Local Operators |
title_full |
GL(3) -Based Quantum Integrable Composite Models. II. Form Factors of Local Operators |
title_fullStr |
GL(3) -Based Quantum Integrable Composite Models. II. Form Factors of Local Operators |
title_full_unstemmed |
GL(3) -Based Quantum Integrable Composite Models. II. Form Factors of Local Operators |
title_sort |
gl(3) -based quantum integrable composite models. ii. form factors of local operators |
publisher |
Інститут математики НАН України |
publishDate |
2015 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/147135 |
citation_txt |
GL(3) -Based Quantum Integrable Composite Models. II. Form Factors of Local Operators / S. Pakuliak, E. Ragoucy, N.A. Slavnov // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 39 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT pakuliaks gl3basedquantumintegrablecompositemodelsiiformfactorsoflocaloperators AT ragoucye gl3basedquantumintegrablecompositemodelsiiformfactorsoflocaloperators AT slavnovna gl3basedquantumintegrablecompositemodelsiiformfactorsoflocaloperators |
first_indexed |
2023-05-20T17:26:40Z |
last_indexed |
2023-05-20T17:26:40Z |
_version_ |
1796153299607486464 |