GL(3) -Based Quantum Integrable Composite Models. II. Form Factors of Local Operators

We study integrable models solvable by the nested algebraic Bethe ansatz and possessing the GL(3)-invariant R-matrix. We consider a composite model where the total monodromy matrix of the model is presented as a product of two partial monodromy matrices. Assuming that the last ones can be expanded i...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2015
Автори: Pakuliak, S., Ragoucy, E., Slavnov, N.A.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2015
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/147135
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:GL(3) -Based Quantum Integrable Composite Models. II. Form Factors of Local Operators / S. Pakuliak, E. Ragoucy, N.A. Slavnov // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 39 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-147135
record_format dspace
spelling irk-123456789-1471352019-02-14T01:25:15Z GL(3) -Based Quantum Integrable Composite Models. II. Form Factors of Local Operators Pakuliak, S. Ragoucy, E. Slavnov, N.A. We study integrable models solvable by the nested algebraic Bethe ansatz and possessing the GL(3)-invariant R-matrix. We consider a composite model where the total monodromy matrix of the model is presented as a product of two partial monodromy matrices. Assuming that the last ones can be expanded into series with respect to the inverse spectral parameter we calculate matrix elements of the local operators in the basis of the transfer matrix eigenstates. We obtain determinant representations for these matrix elements. Thus, we solve the inverse scattering problem in a weak sense. 2015 Article GL(3) -Based Quantum Integrable Composite Models. II. Form Factors of Local Operators / S. Pakuliak, E. Ragoucy, N.A. Slavnov // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 39 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 17B37; 81R50 DOI:10.3842/SIGMA.2015.64 http://dspace.nbuv.gov.ua/handle/123456789/147135 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We study integrable models solvable by the nested algebraic Bethe ansatz and possessing the GL(3)-invariant R-matrix. We consider a composite model where the total monodromy matrix of the model is presented as a product of two partial monodromy matrices. Assuming that the last ones can be expanded into series with respect to the inverse spectral parameter we calculate matrix elements of the local operators in the basis of the transfer matrix eigenstates. We obtain determinant representations for these matrix elements. Thus, we solve the inverse scattering problem in a weak sense.
format Article
author Pakuliak, S.
Ragoucy, E.
Slavnov, N.A.
spellingShingle Pakuliak, S.
Ragoucy, E.
Slavnov, N.A.
GL(3) -Based Quantum Integrable Composite Models. II. Form Factors of Local Operators
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Pakuliak, S.
Ragoucy, E.
Slavnov, N.A.
author_sort Pakuliak, S.
title GL(3) -Based Quantum Integrable Composite Models. II. Form Factors of Local Operators
title_short GL(3) -Based Quantum Integrable Composite Models. II. Form Factors of Local Operators
title_full GL(3) -Based Quantum Integrable Composite Models. II. Form Factors of Local Operators
title_fullStr GL(3) -Based Quantum Integrable Composite Models. II. Form Factors of Local Operators
title_full_unstemmed GL(3) -Based Quantum Integrable Composite Models. II. Form Factors of Local Operators
title_sort gl(3) -based quantum integrable composite models. ii. form factors of local operators
publisher Інститут математики НАН України
publishDate 2015
url http://dspace.nbuv.gov.ua/handle/123456789/147135
citation_txt GL(3) -Based Quantum Integrable Composite Models. II. Form Factors of Local Operators / S. Pakuliak, E. Ragoucy, N.A. Slavnov // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 39 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT pakuliaks gl3basedquantumintegrablecompositemodelsiiformfactorsoflocaloperators
AT ragoucye gl3basedquantumintegrablecompositemodelsiiformfactorsoflocaloperators
AT slavnovna gl3basedquantumintegrablecompositemodelsiiformfactorsoflocaloperators
first_indexed 2023-05-20T17:26:40Z
last_indexed 2023-05-20T17:26:40Z
_version_ 1796153299607486464