Computation of Composition Functions and Invariant Vector Fields in Terms of Structure Constants of Associated Lie Algebras

Methods of construction of the composition function, left- and right-invariant vector fields and differential 1-forms of a Lie group from the structure constants of the associated Lie algebra are proposed. It is shown that in the second canonical coordinates these problems are reduced to the matrix...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2015
Автори: Magazev, A.A., Mikheyev, V.V., Shirokov, I.V.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2015
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/147137
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Computation of Composition Functions and Invariant Vector Fields in Terms of Structure Constants of Associated Lie Algebras / A.A. Magazev, V.V. Mikheyev, I.V. Shirokov // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 26 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-147137
record_format dspace
spelling irk-123456789-1471372019-02-14T01:25:16Z Computation of Composition Functions and Invariant Vector Fields in Terms of Structure Constants of Associated Lie Algebras Magazev, A.A. Mikheyev, V.V. Shirokov, I.V. Methods of construction of the composition function, left- and right-invariant vector fields and differential 1-forms of a Lie group from the structure constants of the associated Lie algebra are proposed. It is shown that in the second canonical coordinates these problems are reduced to the matrix inversions and matrix exponentiations, and the composition function can be represented in quadratures. Moreover, it is proven that the transition function from the first canonical coordinates to the second canonical coordinates can be found by quadratures. 2015 Article Computation of Composition Functions and Invariant Vector Fields in Terms of Structure Constants of Associated Lie Algebras / A.A. Magazev, V.V. Mikheyev, I.V. Shirokov // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 26 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 22E05; 22E60; 22E70 DOI:10.3842/SIGMA.2015.066 http://dspace.nbuv.gov.ua/handle/123456789/147137 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Methods of construction of the composition function, left- and right-invariant vector fields and differential 1-forms of a Lie group from the structure constants of the associated Lie algebra are proposed. It is shown that in the second canonical coordinates these problems are reduced to the matrix inversions and matrix exponentiations, and the composition function can be represented in quadratures. Moreover, it is proven that the transition function from the first canonical coordinates to the second canonical coordinates can be found by quadratures.
format Article
author Magazev, A.A.
Mikheyev, V.V.
Shirokov, I.V.
spellingShingle Magazev, A.A.
Mikheyev, V.V.
Shirokov, I.V.
Computation of Composition Functions and Invariant Vector Fields in Terms of Structure Constants of Associated Lie Algebras
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Magazev, A.A.
Mikheyev, V.V.
Shirokov, I.V.
author_sort Magazev, A.A.
title Computation of Composition Functions and Invariant Vector Fields in Terms of Structure Constants of Associated Lie Algebras
title_short Computation of Composition Functions and Invariant Vector Fields in Terms of Structure Constants of Associated Lie Algebras
title_full Computation of Composition Functions and Invariant Vector Fields in Terms of Structure Constants of Associated Lie Algebras
title_fullStr Computation of Composition Functions and Invariant Vector Fields in Terms of Structure Constants of Associated Lie Algebras
title_full_unstemmed Computation of Composition Functions and Invariant Vector Fields in Terms of Structure Constants of Associated Lie Algebras
title_sort computation of composition functions and invariant vector fields in terms of structure constants of associated lie algebras
publisher Інститут математики НАН України
publishDate 2015
url http://dspace.nbuv.gov.ua/handle/123456789/147137
citation_txt Computation of Composition Functions and Invariant Vector Fields in Terms of Structure Constants of Associated Lie Algebras / A.A. Magazev, V.V. Mikheyev, I.V. Shirokov // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 26 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT magazevaa computationofcompositionfunctionsandinvariantvectorfieldsintermsofstructureconstantsofassociatedliealgebras
AT mikheyevvv computationofcompositionfunctionsandinvariantvectorfieldsintermsofstructureconstantsofassociatedliealgebras
AT shirokoviv computationofcompositionfunctionsandinvariantvectorfieldsintermsofstructureconstantsofassociatedliealgebras
first_indexed 2023-05-20T17:26:41Z
last_indexed 2023-05-20T17:26:41Z
_version_ 1796153299819298816