Path Integrals on Euclidean Space Forms
In this paper we develop a quantization method for flat compact manifolds based on path integrals. In this method the Hilbert space of holomorphic functions in the complexification of the manifold is used. This space is a reproducing kernel Hilbert space. A definition of the Feynman propagator, base...
Збережено в:
Дата: | 2015 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2015
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/147139 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Path Integrals on Euclidean Space Forms / G. Capobianco, W. Reartes // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 35 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-147139 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1471392019-02-14T01:25:21Z Path Integrals on Euclidean Space Forms Capobianco, G. Reartes, W. In this paper we develop a quantization method for flat compact manifolds based on path integrals. In this method the Hilbert space of holomorphic functions in the complexification of the manifold is used. This space is a reproducing kernel Hilbert space. A definition of the Feynman propagator, based on the reproducing property of this space, is proposed. In the Rⁿ case the obtained results coincide with the known expressions. 2015 Article Path Integrals on Euclidean Space Forms / G. Capobianco, W. Reartes // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 35 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 53Z05; 81S40 DOI:10.3842/SIGMA.2015.071 http://dspace.nbuv.gov.ua/handle/123456789/147139 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
In this paper we develop a quantization method for flat compact manifolds based on path integrals. In this method the Hilbert space of holomorphic functions in the complexification of the manifold is used. This space is a reproducing kernel Hilbert space. A definition of the Feynman propagator, based on the reproducing property of this space, is proposed. In the Rⁿ case the obtained results coincide with the known expressions. |
format |
Article |
author |
Capobianco, G. Reartes, W. |
spellingShingle |
Capobianco, G. Reartes, W. Path Integrals on Euclidean Space Forms Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Capobianco, G. Reartes, W. |
author_sort |
Capobianco, G. |
title |
Path Integrals on Euclidean Space Forms |
title_short |
Path Integrals on Euclidean Space Forms |
title_full |
Path Integrals on Euclidean Space Forms |
title_fullStr |
Path Integrals on Euclidean Space Forms |
title_full_unstemmed |
Path Integrals on Euclidean Space Forms |
title_sort |
path integrals on euclidean space forms |
publisher |
Інститут математики НАН України |
publishDate |
2015 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/147139 |
citation_txt |
Path Integrals on Euclidean Space Forms / G. Capobianco, W. Reartes // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 35 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT capobiancog pathintegralsoneuclideanspaceforms AT reartesw pathintegralsoneuclideanspaceforms |
first_indexed |
2023-05-20T17:26:41Z |
last_indexed |
2023-05-20T17:26:41Z |
_version_ |
1796153300032159744 |