Path Integrals on Euclidean Space Forms

In this paper we develop a quantization method for flat compact manifolds based on path integrals. In this method the Hilbert space of holomorphic functions in the complexification of the manifold is used. This space is a reproducing kernel Hilbert space. A definition of the Feynman propagator, base...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2015
Автори: Capobianco, G., Reartes, W.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2015
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/147139
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Path Integrals on Euclidean Space Forms / G. Capobianco, W. Reartes // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 35 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-147139
record_format dspace
spelling irk-123456789-1471392019-02-14T01:25:21Z Path Integrals on Euclidean Space Forms Capobianco, G. Reartes, W. In this paper we develop a quantization method for flat compact manifolds based on path integrals. In this method the Hilbert space of holomorphic functions in the complexification of the manifold is used. This space is a reproducing kernel Hilbert space. A definition of the Feynman propagator, based on the reproducing property of this space, is proposed. In the Rⁿ case the obtained results coincide with the known expressions. 2015 Article Path Integrals on Euclidean Space Forms / G. Capobianco, W. Reartes // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 35 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 53Z05; 81S40 DOI:10.3842/SIGMA.2015.071 http://dspace.nbuv.gov.ua/handle/123456789/147139 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description In this paper we develop a quantization method for flat compact manifolds based on path integrals. In this method the Hilbert space of holomorphic functions in the complexification of the manifold is used. This space is a reproducing kernel Hilbert space. A definition of the Feynman propagator, based on the reproducing property of this space, is proposed. In the Rⁿ case the obtained results coincide with the known expressions.
format Article
author Capobianco, G.
Reartes, W.
spellingShingle Capobianco, G.
Reartes, W.
Path Integrals on Euclidean Space Forms
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Capobianco, G.
Reartes, W.
author_sort Capobianco, G.
title Path Integrals on Euclidean Space Forms
title_short Path Integrals on Euclidean Space Forms
title_full Path Integrals on Euclidean Space Forms
title_fullStr Path Integrals on Euclidean Space Forms
title_full_unstemmed Path Integrals on Euclidean Space Forms
title_sort path integrals on euclidean space forms
publisher Інститут математики НАН України
publishDate 2015
url http://dspace.nbuv.gov.ua/handle/123456789/147139
citation_txt Path Integrals on Euclidean Space Forms / G. Capobianco, W. Reartes // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 35 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT capobiancog pathintegralsoneuclideanspaceforms
AT reartesw pathintegralsoneuclideanspaceforms
first_indexed 2023-05-20T17:26:41Z
last_indexed 2023-05-20T17:26:41Z
_version_ 1796153300032159744