(Co)isotropic Pairs in Poisson and Presymplectic Vector Spaces
We give two equivalent sets of invariants which classify pairs of coisotropic subspaces of finite-dimensional Poisson vector spaces. For this it is convenient to dualize; we work with pairs of isotropic subspaces of presymplectic vector spaces. We identify ten elementary types which are the building...
Збережено в:
Дата: | 2015 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2015
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/147140 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | (Co)isotropic Pairs in Poisson and Presymplectic Vector Spaces / J. Lorand, A. Weinstein // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 17 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-147140 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1471402019-02-14T01:25:44Z (Co)isotropic Pairs in Poisson and Presymplectic Vector Spaces Lorand, J. Weinstein, А. We give two equivalent sets of invariants which classify pairs of coisotropic subspaces of finite-dimensional Poisson vector spaces. For this it is convenient to dualize; we work with pairs of isotropic subspaces of presymplectic vector spaces. We identify ten elementary types which are the building blocks of such pairs, and we write down a matrix, invertible over Z, which takes one 10-tuple of invariants to the other. 2015 Article (Co)isotropic Pairs in Poisson and Presymplectic Vector Spaces / J. Lorand, A. Weinstein // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 17 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 15A21; 18B10; 53D99 DOI:10.3842/SIGMA.2015.072 http://dspace.nbuv.gov.ua/handle/123456789/147140 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We give two equivalent sets of invariants which classify pairs of coisotropic subspaces of finite-dimensional Poisson vector spaces. For this it is convenient to dualize; we work with pairs of isotropic subspaces of presymplectic vector spaces. We identify ten elementary types which are the building blocks of such pairs, and we write down a matrix, invertible over Z, which takes one 10-tuple of invariants to the other. |
format |
Article |
author |
Lorand, J. Weinstein, А. |
spellingShingle |
Lorand, J. Weinstein, А. (Co)isotropic Pairs in Poisson and Presymplectic Vector Spaces Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Lorand, J. Weinstein, А. |
author_sort |
Lorand, J. |
title |
(Co)isotropic Pairs in Poisson and Presymplectic Vector Spaces |
title_short |
(Co)isotropic Pairs in Poisson and Presymplectic Vector Spaces |
title_full |
(Co)isotropic Pairs in Poisson and Presymplectic Vector Spaces |
title_fullStr |
(Co)isotropic Pairs in Poisson and Presymplectic Vector Spaces |
title_full_unstemmed |
(Co)isotropic Pairs in Poisson and Presymplectic Vector Spaces |
title_sort |
(co)isotropic pairs in poisson and presymplectic vector spaces |
publisher |
Інститут математики НАН України |
publishDate |
2015 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/147140 |
citation_txt |
(Co)isotropic Pairs in Poisson and Presymplectic Vector Spaces / J. Lorand, A. Weinstein // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 17 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT lorandj coisotropicpairsinpoissonandpresymplecticvectorspaces AT weinsteina coisotropicpairsinpoissonandpresymplecticvectorspaces |
first_indexed |
2023-05-20T17:26:41Z |
last_indexed |
2023-05-20T17:26:41Z |
_version_ |
1796153309922328576 |