(Co)isotropic Pairs in Poisson and Presymplectic Vector Spaces

We give two equivalent sets of invariants which classify pairs of coisotropic subspaces of finite-dimensional Poisson vector spaces. For this it is convenient to dualize; we work with pairs of isotropic subspaces of presymplectic vector spaces. We identify ten elementary types which are the building...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2015
Автори: Lorand, J., Weinstein, А.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2015
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/147140
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:(Co)isotropic Pairs in Poisson and Presymplectic Vector Spaces / J. Lorand, A. Weinstein // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 17 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-147140
record_format dspace
spelling irk-123456789-1471402019-02-14T01:25:44Z (Co)isotropic Pairs in Poisson and Presymplectic Vector Spaces Lorand, J. Weinstein, А. We give two equivalent sets of invariants which classify pairs of coisotropic subspaces of finite-dimensional Poisson vector spaces. For this it is convenient to dualize; we work with pairs of isotropic subspaces of presymplectic vector spaces. We identify ten elementary types which are the building blocks of such pairs, and we write down a matrix, invertible over Z, which takes one 10-tuple of invariants to the other. 2015 Article (Co)isotropic Pairs in Poisson and Presymplectic Vector Spaces / J. Lorand, A. Weinstein // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 17 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 15A21; 18B10; 53D99 DOI:10.3842/SIGMA.2015.072 http://dspace.nbuv.gov.ua/handle/123456789/147140 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We give two equivalent sets of invariants which classify pairs of coisotropic subspaces of finite-dimensional Poisson vector spaces. For this it is convenient to dualize; we work with pairs of isotropic subspaces of presymplectic vector spaces. We identify ten elementary types which are the building blocks of such pairs, and we write down a matrix, invertible over Z, which takes one 10-tuple of invariants to the other.
format Article
author Lorand, J.
Weinstein, А.
spellingShingle Lorand, J.
Weinstein, А.
(Co)isotropic Pairs in Poisson and Presymplectic Vector Spaces
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Lorand, J.
Weinstein, А.
author_sort Lorand, J.
title (Co)isotropic Pairs in Poisson and Presymplectic Vector Spaces
title_short (Co)isotropic Pairs in Poisson and Presymplectic Vector Spaces
title_full (Co)isotropic Pairs in Poisson and Presymplectic Vector Spaces
title_fullStr (Co)isotropic Pairs in Poisson and Presymplectic Vector Spaces
title_full_unstemmed (Co)isotropic Pairs in Poisson and Presymplectic Vector Spaces
title_sort (co)isotropic pairs in poisson and presymplectic vector spaces
publisher Інститут математики НАН України
publishDate 2015
url http://dspace.nbuv.gov.ua/handle/123456789/147140
citation_txt (Co)isotropic Pairs in Poisson and Presymplectic Vector Spaces / J. Lorand, A. Weinstein // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 17 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT lorandj coisotropicpairsinpoissonandpresymplecticvectorspaces
AT weinsteina coisotropicpairsinpoissonandpresymplecticvectorspaces
first_indexed 2023-05-20T17:26:41Z
last_indexed 2023-05-20T17:26:41Z
_version_ 1796153309922328576