Fractional Integral and Generalized Stieltjes Transforms for Hypergeometric Functions as Transmutation Operators

For each of the eight n-th derivative parameter changing formulas for Gauss hypergeometric functions a corresponding fractional integration formula is given. For both types of formulas the differential or integral operator is intertwining between two actions of the hypergeometric differential operat...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2015
Автор: Koornwinder, T.H.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2015
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/147142
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Fractional Integral and Generalized Stieltjes Transforms for Hypergeometric Functions as Transmutation Operators / T.H. Koornwinder // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 26 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-147142
record_format dspace
spelling irk-123456789-1471422019-02-14T01:25:34Z Fractional Integral and Generalized Stieltjes Transforms for Hypergeometric Functions as Transmutation Operators Koornwinder, T.H. For each of the eight n-th derivative parameter changing formulas for Gauss hypergeometric functions a corresponding fractional integration formula is given. For both types of formulas the differential or integral operator is intertwining between two actions of the hypergeometric differential operator (for two sets of parameters): a so-called transmutation property. This leads to eight fractional integration formulas and four generalized Stieltjes transform formulas for each of the six different explicit solutions of the hypergeometric differential equation, by letting the transforms act on the solutions. By specialization two Euler type integral representations for each of the six solutions are obtained. 2015 Article Fractional Integral and Generalized Stieltjes Transforms for Hypergeometric Functions as Transmutation Operators / T.H. Koornwinder // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 26 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 33C05; 44A15; 44A20; 26A33 DOI:10.3842/SIGMA.2015.074 http://dspace.nbuv.gov.ua/handle/123456789/147142 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description For each of the eight n-th derivative parameter changing formulas for Gauss hypergeometric functions a corresponding fractional integration formula is given. For both types of formulas the differential or integral operator is intertwining between two actions of the hypergeometric differential operator (for two sets of parameters): a so-called transmutation property. This leads to eight fractional integration formulas and four generalized Stieltjes transform formulas for each of the six different explicit solutions of the hypergeometric differential equation, by letting the transforms act on the solutions. By specialization two Euler type integral representations for each of the six solutions are obtained.
format Article
author Koornwinder, T.H.
spellingShingle Koornwinder, T.H.
Fractional Integral and Generalized Stieltjes Transforms for Hypergeometric Functions as Transmutation Operators
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Koornwinder, T.H.
author_sort Koornwinder, T.H.
title Fractional Integral and Generalized Stieltjes Transforms for Hypergeometric Functions as Transmutation Operators
title_short Fractional Integral and Generalized Stieltjes Transforms for Hypergeometric Functions as Transmutation Operators
title_full Fractional Integral and Generalized Stieltjes Transforms for Hypergeometric Functions as Transmutation Operators
title_fullStr Fractional Integral and Generalized Stieltjes Transforms for Hypergeometric Functions as Transmutation Operators
title_full_unstemmed Fractional Integral and Generalized Stieltjes Transforms for Hypergeometric Functions as Transmutation Operators
title_sort fractional integral and generalized stieltjes transforms for hypergeometric functions as transmutation operators
publisher Інститут математики НАН України
publishDate 2015
url http://dspace.nbuv.gov.ua/handle/123456789/147142
citation_txt Fractional Integral and Generalized Stieltjes Transforms for Hypergeometric Functions as Transmutation Operators / T.H. Koornwinder // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 26 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT koornwinderth fractionalintegralandgeneralizedstieltjestransformsforhypergeometricfunctionsastransmutationoperators
first_indexed 2023-05-20T17:26:41Z
last_indexed 2023-05-20T17:26:41Z
_version_ 1796153310132043776