An Asymmetric Noncommutative Torus

We introduce a family of spectral triples that describe the curved noncommutative two-torus. The relevant family of new Dirac operators is given by rescaling one of two terms in the flat Dirac operator. We compute the dressed scalar curvature and show that the Gauss-Bonnet theorem holds (which is no...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2015
Автори: Dąbrowski, L., Sitarz, A.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2015
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/147144
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:An Asymmetric Noncommutative Torus / L. Dąbrowski, A. Sitarz // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 16 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-147144
record_format dspace
spelling irk-123456789-1471442019-02-14T01:25:44Z An Asymmetric Noncommutative Torus Dąbrowski, L. Sitarz, A. We introduce a family of spectral triples that describe the curved noncommutative two-torus. The relevant family of new Dirac operators is given by rescaling one of two terms in the flat Dirac operator. We compute the dressed scalar curvature and show that the Gauss-Bonnet theorem holds (which is not covered by the general result of Connes and Moscovici). 2015 Article An Asymmetric Noncommutative Torus / L. Dąbrowski, A. Sitarz // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 16 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 58B34; 46L87 DOI:10.3842/SIGMA.2015.075 http://dspace.nbuv.gov.ua/handle/123456789/147144 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We introduce a family of spectral triples that describe the curved noncommutative two-torus. The relevant family of new Dirac operators is given by rescaling one of two terms in the flat Dirac operator. We compute the dressed scalar curvature and show that the Gauss-Bonnet theorem holds (which is not covered by the general result of Connes and Moscovici).
format Article
author Dąbrowski, L.
Sitarz, A.
spellingShingle Dąbrowski, L.
Sitarz, A.
An Asymmetric Noncommutative Torus
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Dąbrowski, L.
Sitarz, A.
author_sort Dąbrowski, L.
title An Asymmetric Noncommutative Torus
title_short An Asymmetric Noncommutative Torus
title_full An Asymmetric Noncommutative Torus
title_fullStr An Asymmetric Noncommutative Torus
title_full_unstemmed An Asymmetric Noncommutative Torus
title_sort asymmetric noncommutative torus
publisher Інститут математики НАН України
publishDate 2015
url http://dspace.nbuv.gov.ua/handle/123456789/147144
citation_txt An Asymmetric Noncommutative Torus / L. Dąbrowski, A. Sitarz // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 16 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT dabrowskil anasymmetricnoncommutativetorus
AT sitarza anasymmetricnoncommutativetorus
AT dabrowskil asymmetricnoncommutativetorus
AT sitarza asymmetricnoncommutativetorus
first_indexed 2023-05-20T17:26:42Z
last_indexed 2023-05-20T17:26:42Z
_version_ 1796153310342807552