An Asymmetric Noncommutative Torus
We introduce a family of spectral triples that describe the curved noncommutative two-torus. The relevant family of new Dirac operators is given by rescaling one of two terms in the flat Dirac operator. We compute the dressed scalar curvature and show that the Gauss-Bonnet theorem holds (which is no...
Збережено в:
Дата: | 2015 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2015
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/147144 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | An Asymmetric Noncommutative Torus / L. Dąbrowski, A. Sitarz // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 16 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-147144 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1471442019-02-14T01:25:44Z An Asymmetric Noncommutative Torus Dąbrowski, L. Sitarz, A. We introduce a family of spectral triples that describe the curved noncommutative two-torus. The relevant family of new Dirac operators is given by rescaling one of two terms in the flat Dirac operator. We compute the dressed scalar curvature and show that the Gauss-Bonnet theorem holds (which is not covered by the general result of Connes and Moscovici). 2015 Article An Asymmetric Noncommutative Torus / L. Dąbrowski, A. Sitarz // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 16 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 58B34; 46L87 DOI:10.3842/SIGMA.2015.075 http://dspace.nbuv.gov.ua/handle/123456789/147144 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We introduce a family of spectral triples that describe the curved noncommutative two-torus. The relevant family of new Dirac operators is given by rescaling one of two terms in the flat Dirac operator. We compute the dressed scalar curvature and show that the Gauss-Bonnet theorem holds (which is not covered by the general result of Connes and Moscovici). |
format |
Article |
author |
Dąbrowski, L. Sitarz, A. |
spellingShingle |
Dąbrowski, L. Sitarz, A. An Asymmetric Noncommutative Torus Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Dąbrowski, L. Sitarz, A. |
author_sort |
Dąbrowski, L. |
title |
An Asymmetric Noncommutative Torus |
title_short |
An Asymmetric Noncommutative Torus |
title_full |
An Asymmetric Noncommutative Torus |
title_fullStr |
An Asymmetric Noncommutative Torus |
title_full_unstemmed |
An Asymmetric Noncommutative Torus |
title_sort |
asymmetric noncommutative torus |
publisher |
Інститут математики НАН України |
publishDate |
2015 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/147144 |
citation_txt |
An Asymmetric Noncommutative Torus / L. Dąbrowski, A. Sitarz // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 16 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT dabrowskil anasymmetricnoncommutativetorus AT sitarza anasymmetricnoncommutativetorus AT dabrowskil asymmetricnoncommutativetorus AT sitarza asymmetricnoncommutativetorus |
first_indexed |
2023-05-20T17:26:42Z |
last_indexed |
2023-05-20T17:26:42Z |
_version_ |
1796153310342807552 |