2025-02-23T09:24:29-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-147148%22&qt=morelikethis&rows=5
2025-02-23T09:24:29-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-147148%22&qt=morelikethis&rows=5
2025-02-23T09:24:29-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T09:24:29-05:00 DEBUG: Deserialized SOLR response

Fast Basins and Branched Fractal Manifolds of Attractors of Iterated Function Systems

The fast basin of an attractor of an iterated function system (IFS) is the set of points in the domain of the IFS whose orbits under the associated semigroup intersect the attractor. Fast basins can have non-integer dimension and comprise a class of deterministic fractal sets. The relationship betwe...

Full description

Saved in:
Bibliographic Details
Main Authors: Barnsley, M.F., Vince, A.
Format: Article
Language:English
Published: Інститут математики НАН України 2015
Series:Symmetry, Integrability and Geometry: Methods and Applications
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/147148
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The fast basin of an attractor of an iterated function system (IFS) is the set of points in the domain of the IFS whose orbits under the associated semigroup intersect the attractor. Fast basins can have non-integer dimension and comprise a class of deterministic fractal sets. The relationship between the basin and the fast basin of a point-fibred attractor is analyzed. To better understand the topology and geometry of fast basins, and because of analogies with analytic continuation, branched fractal manifolds are introduced. A branched fractal manifold is a metric space constructed from the extended code space of a point-fibred attractor, by identifying some addresses. Typically, a branched fractal manifold is a union of a nondenumerable collection of nonhomeomorphic objects, isometric copies of generalized fractal blowups of the attractor.