Moments and Legendre-Fourier Series for Measures Supported on Curves

Some important problems (e.g., in optimal transport and optimal control) have a relaxed (or weak) formulation in a space of appropriate measures which is much easier to solve. However, an optimal solution μ of the latter solves the former if and only if the measure μ is supported on a ''tr...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2015
Автор: Lasserre, J.B.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2015
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/147149
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Moments and Legendre-Fourier Series for Measures Supported on Curves / J.B. Lasserre // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 15 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-147149
record_format dspace
spelling irk-123456789-1471492019-02-14T01:26:24Z Moments and Legendre-Fourier Series for Measures Supported on Curves Lasserre, J.B. Some important problems (e.g., in optimal transport and optimal control) have a relaxed (or weak) formulation in a space of appropriate measures which is much easier to solve. However, an optimal solution μ of the latter solves the former if and only if the measure μ is supported on a ''trajectory'' {(t,x(t)):t∈[0,T]} for some measurable function x(t). We provide necessary and sufficient conditions on moments (γij) of a measure dμ(x,t) on [0,1]² to ensure that μ is supported on a trajectory {(t,x(t)):t∈[0,1]}. Those conditions are stated in terms of Legendre-Fourier coefficients fj=(fj(i)) associated with some functions fj:[0,1]→R, j=1,…, where each fj is obtained from the moments γji, i=0,1,…, of μ. 2015 Article Moments and Legendre-Fourier Series for Measures Supported on Curves / J.B. Lasserre // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 15 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 42C05; 42C10; 42A16; 44A60 DOI:10.3842/SIGMA.2015.077 http://dspace.nbuv.gov.ua/handle/123456789/147149 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Some important problems (e.g., in optimal transport and optimal control) have a relaxed (or weak) formulation in a space of appropriate measures which is much easier to solve. However, an optimal solution μ of the latter solves the former if and only if the measure μ is supported on a ''trajectory'' {(t,x(t)):t∈[0,T]} for some measurable function x(t). We provide necessary and sufficient conditions on moments (γij) of a measure dμ(x,t) on [0,1]² to ensure that μ is supported on a trajectory {(t,x(t)):t∈[0,1]}. Those conditions are stated in terms of Legendre-Fourier coefficients fj=(fj(i)) associated with some functions fj:[0,1]→R, j=1,…, where each fj is obtained from the moments γji, i=0,1,…, of μ.
format Article
author Lasserre, J.B.
spellingShingle Lasserre, J.B.
Moments and Legendre-Fourier Series for Measures Supported on Curves
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Lasserre, J.B.
author_sort Lasserre, J.B.
title Moments and Legendre-Fourier Series for Measures Supported on Curves
title_short Moments and Legendre-Fourier Series for Measures Supported on Curves
title_full Moments and Legendre-Fourier Series for Measures Supported on Curves
title_fullStr Moments and Legendre-Fourier Series for Measures Supported on Curves
title_full_unstemmed Moments and Legendre-Fourier Series for Measures Supported on Curves
title_sort moments and legendre-fourier series for measures supported on curves
publisher Інститут математики НАН України
publishDate 2015
url http://dspace.nbuv.gov.ua/handle/123456789/147149
citation_txt Moments and Legendre-Fourier Series for Measures Supported on Curves / J.B. Lasserre // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 15 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT lasserrejb momentsandlegendrefourierseriesformeasuressupportedoncurves
first_indexed 2023-05-20T17:26:43Z
last_indexed 2023-05-20T17:26:43Z
_version_ 1796153310764335104