Moments and Legendre-Fourier Series for Measures Supported on Curves
Some important problems (e.g., in optimal transport and optimal control) have a relaxed (or weak) formulation in a space of appropriate measures which is much easier to solve. However, an optimal solution μ of the latter solves the former if and only if the measure μ is supported on a ''tr...
Збережено в:
Дата: | 2015 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2015
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/147149 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Moments and Legendre-Fourier Series for Measures Supported on Curves / J.B. Lasserre // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 15 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-147149 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1471492019-02-14T01:26:24Z Moments and Legendre-Fourier Series for Measures Supported on Curves Lasserre, J.B. Some important problems (e.g., in optimal transport and optimal control) have a relaxed (or weak) formulation in a space of appropriate measures which is much easier to solve. However, an optimal solution μ of the latter solves the former if and only if the measure μ is supported on a ''trajectory'' {(t,x(t)):t∈[0,T]} for some measurable function x(t). We provide necessary and sufficient conditions on moments (γij) of a measure dμ(x,t) on [0,1]² to ensure that μ is supported on a trajectory {(t,x(t)):t∈[0,1]}. Those conditions are stated in terms of Legendre-Fourier coefficients fj=(fj(i)) associated with some functions fj:[0,1]→R, j=1,…, where each fj is obtained from the moments γji, i=0,1,…, of μ. 2015 Article Moments and Legendre-Fourier Series for Measures Supported on Curves / J.B. Lasserre // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 15 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 42C05; 42C10; 42A16; 44A60 DOI:10.3842/SIGMA.2015.077 http://dspace.nbuv.gov.ua/handle/123456789/147149 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
Some important problems (e.g., in optimal transport and optimal control) have a relaxed (or weak) formulation in a space of appropriate measures which is much easier to solve. However, an optimal solution μ of the latter solves the former if and only if the measure μ is supported on a ''trajectory'' {(t,x(t)):t∈[0,T]} for some measurable function x(t). We provide necessary and sufficient conditions on moments (γij) of a measure dμ(x,t) on [0,1]² to ensure that μ is supported on a trajectory {(t,x(t)):t∈[0,1]}. Those conditions are stated in terms of Legendre-Fourier coefficients fj=(fj(i)) associated with some functions fj:[0,1]→R, j=1,…, where each fj is obtained from the moments γji, i=0,1,…, of μ. |
format |
Article |
author |
Lasserre, J.B. |
spellingShingle |
Lasserre, J.B. Moments and Legendre-Fourier Series for Measures Supported on Curves Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Lasserre, J.B. |
author_sort |
Lasserre, J.B. |
title |
Moments and Legendre-Fourier Series for Measures Supported on Curves |
title_short |
Moments and Legendre-Fourier Series for Measures Supported on Curves |
title_full |
Moments and Legendre-Fourier Series for Measures Supported on Curves |
title_fullStr |
Moments and Legendre-Fourier Series for Measures Supported on Curves |
title_full_unstemmed |
Moments and Legendre-Fourier Series for Measures Supported on Curves |
title_sort |
moments and legendre-fourier series for measures supported on curves |
publisher |
Інститут математики НАН України |
publishDate |
2015 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/147149 |
citation_txt |
Moments and Legendre-Fourier Series for Measures Supported on Curves / J.B. Lasserre // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 15 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT lasserrejb momentsandlegendrefourierseriesformeasuressupportedoncurves |
first_indexed |
2023-05-20T17:26:43Z |
last_indexed |
2023-05-20T17:26:43Z |
_version_ |
1796153310764335104 |