D-Pseudo-Bosons, Complex Hermite Polynomials, and Integral Quantization

The D-pseudo-boson formalism is illustrated with two examples. The first one involves deformed complex Hermite polynomials built using finite-dimensional irreducible representations of the group GL(2,C) of invertible 2×2 matrices with complex entries. It reveals interesting aspects of these represen...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2015
Автори: Ali, S.T., Bagarello, F., Gazeau, J.P.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2015
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/147152
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:D-Pseudo-Bosons, Complex Hermite Polynomials, and Integral Quantization / S.T. Ali, F. Bagarello, J.P. Gazeau // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 41 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-147152
record_format dspace
spelling irk-123456789-1471522019-02-14T01:26:06Z D-Pseudo-Bosons, Complex Hermite Polynomials, and Integral Quantization Ali, S.T. Bagarello, F. Gazeau, J.P. The D-pseudo-boson formalism is illustrated with two examples. The first one involves deformed complex Hermite polynomials built using finite-dimensional irreducible representations of the group GL(2,C) of invertible 2×2 matrices with complex entries. It reveals interesting aspects of these representations. The second example is based on a pseudo-bosonic generalization of operator-valued functions of a complex variable which resolves the identity. We show that such a generalization allows one to obtain a quantum pseudo-bosonic version of the complex plane viewed as the canonical phase space and to understand functions of the pseudo-bosonic operators as the quantized versions of functions of a complex variable. 2015 Article D-Pseudo-Bosons, Complex Hermite Polynomials, and Integral Quantization / S.T. Ali, F. Bagarello, J.P. Gazeau // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 41 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 81Q12; 47C05; 81S05; 81R30; 33C45 DOI:10.3842/SIGMA.2015.078 http://dspace.nbuv.gov.ua/handle/123456789/147152 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description The D-pseudo-boson formalism is illustrated with two examples. The first one involves deformed complex Hermite polynomials built using finite-dimensional irreducible representations of the group GL(2,C) of invertible 2×2 matrices with complex entries. It reveals interesting aspects of these representations. The second example is based on a pseudo-bosonic generalization of operator-valued functions of a complex variable which resolves the identity. We show that such a generalization allows one to obtain a quantum pseudo-bosonic version of the complex plane viewed as the canonical phase space and to understand functions of the pseudo-bosonic operators as the quantized versions of functions of a complex variable.
format Article
author Ali, S.T.
Bagarello, F.
Gazeau, J.P.
spellingShingle Ali, S.T.
Bagarello, F.
Gazeau, J.P.
D-Pseudo-Bosons, Complex Hermite Polynomials, and Integral Quantization
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Ali, S.T.
Bagarello, F.
Gazeau, J.P.
author_sort Ali, S.T.
title D-Pseudo-Bosons, Complex Hermite Polynomials, and Integral Quantization
title_short D-Pseudo-Bosons, Complex Hermite Polynomials, and Integral Quantization
title_full D-Pseudo-Bosons, Complex Hermite Polynomials, and Integral Quantization
title_fullStr D-Pseudo-Bosons, Complex Hermite Polynomials, and Integral Quantization
title_full_unstemmed D-Pseudo-Bosons, Complex Hermite Polynomials, and Integral Quantization
title_sort d-pseudo-bosons, complex hermite polynomials, and integral quantization
publisher Інститут математики НАН України
publishDate 2015
url http://dspace.nbuv.gov.ua/handle/123456789/147152
citation_txt D-Pseudo-Bosons, Complex Hermite Polynomials, and Integral Quantization / S.T. Ali, F. Bagarello, J.P. Gazeau // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 41 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT alist dpseudobosonscomplexhermitepolynomialsandintegralquantization
AT bagarellof dpseudobosonscomplexhermitepolynomialsandintegralquantization
AT gazeaujp dpseudobosonscomplexhermitepolynomialsandintegralquantization
first_indexed 2023-05-20T17:26:43Z
last_indexed 2023-05-20T17:26:43Z
_version_ 1796153311084150784