2025-02-23T11:27:11-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-147154%22&qt=morelikethis&rows=5
2025-02-23T11:27:11-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-147154%22&qt=morelikethis&rows=5
2025-02-23T11:27:11-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T11:27:11-05:00 DEBUG: Deserialized SOLR response

Monge-Ampère Systems with Lagrangian Pairs

The classes of Monge-Ampère systems, decomposable and bi-decomposable Monge-Ampère systems, including equations for improper affine spheres and hypersurfaces of constant Gauss-Kronecker curvature are introduced. They are studied by the clear geometric setting of Lagrangian contact structures, based...

Full description

Saved in:
Bibliographic Details
Main Authors: Ishikawa, G., Machida, Y.
Format: Article
Language:English
Published: Інститут математики НАН України 2015
Series:Symmetry, Integrability and Geometry: Methods and Applications
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/147154
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The classes of Monge-Ampère systems, decomposable and bi-decomposable Monge-Ampère systems, including equations for improper affine spheres and hypersurfaces of constant Gauss-Kronecker curvature are introduced. They are studied by the clear geometric setting of Lagrangian contact structures, based on the existence of Lagrangian pairs in contact structures. We show that the Lagrangian pair is uniquely determined by such a bi-decomposable system up to the order, if the number of independent variables ≥3. We remark that, in the case of three variables, each bi-decomposable system is generated by a non-degenerate three-form in the sense of Hitchin. It is shown that several classes of homogeneous Monge-Ampère systems with Lagrangian pairs arise naturally in various geometries. Moreover we establish the upper bounds on the symmetry dimensions of decomposable and bi-decomposable Monge-Ampère systems respectively in terms of the geometric structure and we show that these estimates are sharp (Proposition 4.2 and Theorem 5.3).