Monge-Ampère Systems with Lagrangian Pairs

The classes of Monge-Ampère systems, decomposable and bi-decomposable Monge-Ampère systems, including equations for improper affine spheres and hypersurfaces of constant Gauss-Kronecker curvature are introduced. They are studied by the clear geometric setting of Lagrangian contact structures, based...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2015
Автори: Ishikawa, G., Machida, Y.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2015
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/147154
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Monge-Ampère Systems with Lagrangian Pairs / G. Ishikawa, Y. Machida // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 31 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-147154
record_format dspace
spelling irk-123456789-1471542019-02-14T01:24:48Z Monge-Ampère Systems with Lagrangian Pairs Ishikawa, G. Machida, Y. The classes of Monge-Ampère systems, decomposable and bi-decomposable Monge-Ampère systems, including equations for improper affine spheres and hypersurfaces of constant Gauss-Kronecker curvature are introduced. They are studied by the clear geometric setting of Lagrangian contact structures, based on the existence of Lagrangian pairs in contact structures. We show that the Lagrangian pair is uniquely determined by such a bi-decomposable system up to the order, if the number of independent variables ≥3. We remark that, in the case of three variables, each bi-decomposable system is generated by a non-degenerate three-form in the sense of Hitchin. It is shown that several classes of homogeneous Monge-Ampère systems with Lagrangian pairs arise naturally in various geometries. Moreover we establish the upper bounds on the symmetry dimensions of decomposable and bi-decomposable Monge-Ampère systems respectively in terms of the geometric structure and we show that these estimates are sharp (Proposition 4.2 and Theorem 5.3). 2015 Article Monge-Ampère Systems with Lagrangian Pairs / G. Ishikawa, Y. Machida // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 31 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 58K20; 53A15; 53C42 DOI:10.3842/SIGMA.2015.081 http://dspace.nbuv.gov.ua/handle/123456789/147154 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description The classes of Monge-Ampère systems, decomposable and bi-decomposable Monge-Ampère systems, including equations for improper affine spheres and hypersurfaces of constant Gauss-Kronecker curvature are introduced. They are studied by the clear geometric setting of Lagrangian contact structures, based on the existence of Lagrangian pairs in contact structures. We show that the Lagrangian pair is uniquely determined by such a bi-decomposable system up to the order, if the number of independent variables ≥3. We remark that, in the case of three variables, each bi-decomposable system is generated by a non-degenerate three-form in the sense of Hitchin. It is shown that several classes of homogeneous Monge-Ampère systems with Lagrangian pairs arise naturally in various geometries. Moreover we establish the upper bounds on the symmetry dimensions of decomposable and bi-decomposable Monge-Ampère systems respectively in terms of the geometric structure and we show that these estimates are sharp (Proposition 4.2 and Theorem 5.3).
format Article
author Ishikawa, G.
Machida, Y.
spellingShingle Ishikawa, G.
Machida, Y.
Monge-Ampère Systems with Lagrangian Pairs
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Ishikawa, G.
Machida, Y.
author_sort Ishikawa, G.
title Monge-Ampère Systems with Lagrangian Pairs
title_short Monge-Ampère Systems with Lagrangian Pairs
title_full Monge-Ampère Systems with Lagrangian Pairs
title_fullStr Monge-Ampère Systems with Lagrangian Pairs
title_full_unstemmed Monge-Ampère Systems with Lagrangian Pairs
title_sort monge-ampère systems with lagrangian pairs
publisher Інститут математики НАН України
publishDate 2015
url http://dspace.nbuv.gov.ua/handle/123456789/147154
citation_txt Monge-Ampère Systems with Lagrangian Pairs / G. Ishikawa, Y. Machida // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 31 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT ishikawag mongeamperesystemswithlagrangianpairs
AT machiday mongeamperesystemswithlagrangianpairs
first_indexed 2023-05-20T17:26:43Z
last_indexed 2023-05-20T17:26:43Z
_version_ 1796153311293865984