2025-02-23T10:52:53-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-147154%22&qt=morelikethis&rows=5
2025-02-23T10:52:53-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-147154%22&qt=morelikethis&rows=5
2025-02-23T10:52:53-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T10:52:53-05:00 DEBUG: Deserialized SOLR response
Monge-Ampère Systems with Lagrangian Pairs
The classes of Monge-Ampère systems, decomposable and bi-decomposable Monge-Ampère systems, including equations for improper affine spheres and hypersurfaces of constant Gauss-Kronecker curvature are introduced. They are studied by the clear geometric setting of Lagrangian contact structures, based...
Saved in:
Main Authors: | Ishikawa, G., Machida, Y. |
---|---|
Format: | Article |
Language: | English |
Published: |
Інститут математики НАН України
2015
|
Series: | Symmetry, Integrability and Geometry: Methods and Applications |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/147154 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
2025-02-23T10:52:53-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&rows=40&rows=5&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-147154%22&qt=morelikethis
2025-02-23T10:52:53-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&rows=40&rows=5&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-147154%22&qt=morelikethis
2025-02-23T10:52:53-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T10:52:53-05:00 DEBUG: Deserialized SOLR response
Similar Items
-
On the classification of symmetry reductions for the (1+3)-dimensional Monge-Ampere equation
by: V. M. Fedorchuk, et al.
Published: (2020) -
Meta-Symplectic Geometry of 3rd Order Monge-Ampère Equations and their Characteristics
by: Manno, G., et al.
Published: (2016) -
On the symplectic structure deformations related to the Monge–Ampère equation on the Kähler manifold P2(C)
by: A. A. Balinsky, et al.
Published: (2023) -
On reduction of the (1 + 3)-dimensional inhomogeneous Monge – Ampère equation to the first-order partial differential equations
by: V. M. Fedorchuk, et al.
Published: (2022) -
On the Solution of the Monge-Ampere Equation ZxxZyy - Z²xy= f (x, y) with Quadratic Right Side
by: Aminov, Yu., et al.
Published: (2011)