Bispectrality of N-Component KP Wave Functions: A Study in Non-Commutativity
A wave function of the N-component KP Hierarchy with continuous flows determined by an invertible matrix H is constructed from the choice of an MN-dimensional space of finitely-supported vector distributions. This wave function is shown to be an eigenfunction for a ring of matrix differential operat...
Збережено в:
Дата: | 2015 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2015
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/147157 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Bispectrality of N-Component KP Wave Functions: A Study in Non-Commutativity / A. Kasman // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 33 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | A wave function of the N-component KP Hierarchy with continuous flows determined by an invertible matrix H is constructed from the choice of an MN-dimensional space of finitely-supported vector distributions. This wave function is shown to be an eigenfunction for a ring of matrix differential operators in x having eigenvalues that are matrix functions of the spectral parameter z. If the space of distributions is invariant under left multiplication by H, then a matrix coefficient differential-translation operator in z is shown to share this eigenfunction and have an eigenvalue that is a matrix function of x. This paper not only generates new examples of bispectral operators, it also explores the consequences of non-commutativity for techniques and objects used in previous investigations. |
---|