Bispectrality of N-Component KP Wave Functions: A Study in Non-Commutativity

A wave function of the N-component KP Hierarchy with continuous flows determined by an invertible matrix H is constructed from the choice of an MN-dimensional space of finitely-supported vector distributions. This wave function is shown to be an eigenfunction for a ring of matrix differential operat...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2015
Автор: Kasman, A.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2015
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/147157
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Bispectrality of N-Component KP Wave Functions: A Study in Non-Commutativity / A. Kasman // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 33 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:A wave function of the N-component KP Hierarchy with continuous flows determined by an invertible matrix H is constructed from the choice of an MN-dimensional space of finitely-supported vector distributions. This wave function is shown to be an eigenfunction for a ring of matrix differential operators in x having eigenvalues that are matrix functions of the spectral parameter z. If the space of distributions is invariant under left multiplication by H, then a matrix coefficient differential-translation operator in z is shown to share this eigenfunction and have an eigenvalue that is a matrix function of x. This paper not only generates new examples of bispectral operators, it also explores the consequences of non-commutativity for techniques and objects used in previous investigations.