Harmonic Oscillator on the SO(2,2) Hyperboloid

In the present work the classical problem of harmonic oscillator in the hyperbolic space H²₂: z²₀+z²₁−z²₂−z²₃=R² has been completely solved in framework of Hamilton-Jacobi equation. We have shown that the harmonic oscillator on H²₂, as in the other spaces with constant curvature, is exactly solvable...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2015
Автори: Petrosyan, D.R., Pogosyan, G.S.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2015
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/147158
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Harmonic Oscillator on the SO(2,2) Hyperboloid / D.R. Petrosyan, G.S. Pogosyan // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 51 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-147158
record_format dspace
spelling irk-123456789-1471582019-02-14T01:24:48Z Harmonic Oscillator on the SO(2,2) Hyperboloid Petrosyan, D.R. Pogosyan, G.S. In the present work the classical problem of harmonic oscillator in the hyperbolic space H²₂: z²₀+z²₁−z²₂−z²₃=R² has been completely solved in framework of Hamilton-Jacobi equation. We have shown that the harmonic oscillator on H²₂, as in the other spaces with constant curvature, is exactly solvable and belongs to the class of maximally superintegrable system. We have proved that all the bounded classical trajectories are closed and periodic. The orbits of motion are ellipses or circles for bounded motion and ultraellipses or equidistant curve for infinite ones. 2015 Article Harmonic Oscillator on the SO(2,2) Hyperboloid / D.R. Petrosyan, G.S. Pogosyan // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 51 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 22E60; 37J15; 37J50; 70H20 DOI:10.3842/SIGMA.2015.096 http://dspace.nbuv.gov.ua/handle/123456789/147158 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description In the present work the classical problem of harmonic oscillator in the hyperbolic space H²₂: z²₀+z²₁−z²₂−z²₃=R² has been completely solved in framework of Hamilton-Jacobi equation. We have shown that the harmonic oscillator on H²₂, as in the other spaces with constant curvature, is exactly solvable and belongs to the class of maximally superintegrable system. We have proved that all the bounded classical trajectories are closed and periodic. The orbits of motion are ellipses or circles for bounded motion and ultraellipses or equidistant curve for infinite ones.
format Article
author Petrosyan, D.R.
Pogosyan, G.S.
spellingShingle Petrosyan, D.R.
Pogosyan, G.S.
Harmonic Oscillator on the SO(2,2) Hyperboloid
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Petrosyan, D.R.
Pogosyan, G.S.
author_sort Petrosyan, D.R.
title Harmonic Oscillator on the SO(2,2) Hyperboloid
title_short Harmonic Oscillator on the SO(2,2) Hyperboloid
title_full Harmonic Oscillator on the SO(2,2) Hyperboloid
title_fullStr Harmonic Oscillator on the SO(2,2) Hyperboloid
title_full_unstemmed Harmonic Oscillator on the SO(2,2) Hyperboloid
title_sort harmonic oscillator on the so(2,2) hyperboloid
publisher Інститут математики НАН України
publishDate 2015
url http://dspace.nbuv.gov.ua/handle/123456789/147158
citation_txt Harmonic Oscillator on the SO(2,2) Hyperboloid / D.R. Petrosyan, G.S. Pogosyan // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 51 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT petrosyandr harmonicoscillatorontheso22hyperboloid
AT pogosyangs harmonicoscillatorontheso22hyperboloid
first_indexed 2023-05-20T17:26:44Z
last_indexed 2023-05-20T17:26:44Z
_version_ 1796153311718539264