Multispecies Weighted Hurwitz Numbers

The construction of hypergeometric 2D Toda τ-functions as generating functions for weighted Hurwitz numbers is extended to multispecies families. Both the enumerative geometrical significance of multispecies weighted Hurwitz numbers, as weighted enumerations of branched coverings of the Riemann sphe...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2015
Автор: Harnad, J.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2015
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/147164
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Multispecies Weighted Hurwitz Numbers / J. Harnad // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 30 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-147164
record_format dspace
spelling irk-123456789-1471642019-02-14T01:24:57Z Multispecies Weighted Hurwitz Numbers Harnad, J. The construction of hypergeometric 2D Toda τ-functions as generating functions for weighted Hurwitz numbers is extended to multispecies families. Both the enumerative geometrical significance of multispecies weighted Hurwitz numbers, as weighted enumerations of branched coverings of the Riemann sphere, and their combinatorial significance in terms of weighted paths in the Cayley graph of Sn are derived. The particular case of multispecies quantum weighted Hurwitz numbers is studied in detail. 2015 Article Multispecies Weighted Hurwitz Numbers / J. Harnad // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 30 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 05A15; 14H30; 33C70; 57M12 DOI:10.3842/SIGMA.2015.097 http://dspace.nbuv.gov.ua/handle/123456789/147164 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description The construction of hypergeometric 2D Toda τ-functions as generating functions for weighted Hurwitz numbers is extended to multispecies families. Both the enumerative geometrical significance of multispecies weighted Hurwitz numbers, as weighted enumerations of branched coverings of the Riemann sphere, and their combinatorial significance in terms of weighted paths in the Cayley graph of Sn are derived. The particular case of multispecies quantum weighted Hurwitz numbers is studied in detail.
format Article
author Harnad, J.
spellingShingle Harnad, J.
Multispecies Weighted Hurwitz Numbers
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Harnad, J.
author_sort Harnad, J.
title Multispecies Weighted Hurwitz Numbers
title_short Multispecies Weighted Hurwitz Numbers
title_full Multispecies Weighted Hurwitz Numbers
title_fullStr Multispecies Weighted Hurwitz Numbers
title_full_unstemmed Multispecies Weighted Hurwitz Numbers
title_sort multispecies weighted hurwitz numbers
publisher Інститут математики НАН України
publishDate 2015
url http://dspace.nbuv.gov.ua/handle/123456789/147164
citation_txt Multispecies Weighted Hurwitz Numbers / J. Harnad // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 30 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT harnadj multispeciesweightedhurwitznumbers
first_indexed 2023-05-20T17:26:45Z
last_indexed 2023-05-20T17:26:45Z
_version_ 1796153312142163968