A Classical Limit of Noumi's q-Integral Operator
We demonstrate how a known Whittaker function integral identity arises from the t=0 and q→1 limit of the Macdonald polynomial eigenrelation satisfied by Noumi's q-integral operator.
Збережено в:
Дата: | 2015 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2015
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/147165 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | A Classical Limit of Noumi's q-Integral Operator / A. Borodin, I. Corwin, D. Remenik // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 13 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-147165 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1471652019-02-14T01:24:58Z A Classical Limit of Noumi's q-Integral Operator Borodin, A. Corwin, I. Remenik, D. We demonstrate how a known Whittaker function integral identity arises from the t=0 and q→1 limit of the Macdonald polynomial eigenrelation satisfied by Noumi's q-integral operator. 2015 Article A Classical Limit of Noumi's q-Integral Operator / A. Borodin, I. Corwin, D. Remenik // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 13 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 05E05; 33D52; 33D52; 82B23 DOI:10.3842/SIGMA.2015.098 http://dspace.nbuv.gov.ua/handle/123456789/147165 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We demonstrate how a known Whittaker function integral identity arises from the t=0 and q→1 limit of the Macdonald polynomial eigenrelation satisfied by Noumi's q-integral operator. |
format |
Article |
author |
Borodin, A. Corwin, I. Remenik, D. |
spellingShingle |
Borodin, A. Corwin, I. Remenik, D. A Classical Limit of Noumi's q-Integral Operator Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Borodin, A. Corwin, I. Remenik, D. |
author_sort |
Borodin, A. |
title |
A Classical Limit of Noumi's q-Integral Operator |
title_short |
A Classical Limit of Noumi's q-Integral Operator |
title_full |
A Classical Limit of Noumi's q-Integral Operator |
title_fullStr |
A Classical Limit of Noumi's q-Integral Operator |
title_full_unstemmed |
A Classical Limit of Noumi's q-Integral Operator |
title_sort |
classical limit of noumi's q-integral operator |
publisher |
Інститут математики НАН України |
publishDate |
2015 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/147165 |
citation_txt |
A Classical Limit of Noumi's q-Integral Operator / A. Borodin, I. Corwin, D. Remenik // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 13 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT borodina aclassicallimitofnoumisqintegraloperator AT corwini aclassicallimitofnoumisqintegraloperator AT remenikd aclassicallimitofnoumisqintegraloperator AT borodina classicallimitofnoumisqintegraloperator AT corwini classicallimitofnoumisqintegraloperator AT remenikd classicallimitofnoumisqintegraloperator |
first_indexed |
2023-05-20T17:26:45Z |
last_indexed |
2023-05-20T17:26:45Z |
_version_ |
1796153317566447616 |