Rational Solutions of the H3 and Q1 Models in the ABS Lattice List
In the paper we present rational solutions for the H3 and Q1 models in the Adler-Bobenko-Suris lattice list. These solutions are in Casoratian form and are generated by considering difference equation sets satisfied by the basic Casoratian column vector.
Збережено в:
Дата: | 2011 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2011
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/147166 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Rational Solutions of the H3 and Q1 Models in the ABS Lattice List / Y. Shi, D. Zhang // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 13 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | In the paper we present rational solutions for the H3 and Q1 models in the Adler-Bobenko-Suris lattice list. These solutions are in Casoratian form and are generated by considering difference equation sets satisfied by the basic Casoratian column vector. |
---|