The Fourier Transform on Quantum Euclidean Space

We study Fourier theory on quantum Euclidean space. A modified version of the general definition of the Fourier transform on a quantum space is used and its inverse is constructed. The Fourier transforms can be defined by their Bochner's relations and a new type of q-Hankel transforms using the...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2011
Автор: Coulembier, K.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2011
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/147167
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:The Fourier Transform on Quantum Euclidean Space / K. Coulembier // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 36 назв. — англ.

Репозиторії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-147167
record_format dspace
spelling irk-123456789-1471672019-02-14T01:26:07Z The Fourier Transform on Quantum Euclidean Space Coulembier, K. We study Fourier theory on quantum Euclidean space. A modified version of the general definition of the Fourier transform on a quantum space is used and its inverse is constructed. The Fourier transforms can be defined by their Bochner's relations and a new type of q-Hankel transforms using the first and second q-Bessel functions. The behavior of the Fourier transforms with respect to partial derivatives and multiplication with variables is studied. The Fourier transform acts between the two representation spaces for the harmonic oscillator on quantum Euclidean space. By using this property it is possible to define a Fourier transform on the entire Hilbert space of the harmonic oscillator, which is its own inverse and satisfies the Parseval theorem. 2011 Article The Fourier Transform on Quantum Euclidean Space / K. Coulembier // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 36 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 17B37; 81R60; 33D50 DOI:10.3842/SIGMA.2011.047 http://dspace.nbuv.gov.ua/handle/123456789/147167 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We study Fourier theory on quantum Euclidean space. A modified version of the general definition of the Fourier transform on a quantum space is used and its inverse is constructed. The Fourier transforms can be defined by their Bochner's relations and a new type of q-Hankel transforms using the first and second q-Bessel functions. The behavior of the Fourier transforms with respect to partial derivatives and multiplication with variables is studied. The Fourier transform acts between the two representation spaces for the harmonic oscillator on quantum Euclidean space. By using this property it is possible to define a Fourier transform on the entire Hilbert space of the harmonic oscillator, which is its own inverse and satisfies the Parseval theorem.
format Article
author Coulembier, K.
spellingShingle Coulembier, K.
The Fourier Transform on Quantum Euclidean Space
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Coulembier, K.
author_sort Coulembier, K.
title The Fourier Transform on Quantum Euclidean Space
title_short The Fourier Transform on Quantum Euclidean Space
title_full The Fourier Transform on Quantum Euclidean Space
title_fullStr The Fourier Transform on Quantum Euclidean Space
title_full_unstemmed The Fourier Transform on Quantum Euclidean Space
title_sort fourier transform on quantum euclidean space
publisher Інститут математики НАН України
publishDate 2011
url http://dspace.nbuv.gov.ua/handle/123456789/147167
citation_txt The Fourier Transform on Quantum Euclidean Space / K. Coulembier // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 36 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT coulembierk thefouriertransformonquantumeuclideanspace
AT coulembierk fouriertransformonquantumeuclideanspace
first_indexed 2023-05-20T17:26:46Z
last_indexed 2023-05-20T17:26:46Z
_version_ 1796153300243972096