Two-Variable Wilson Polynomials and the Generic Superintegrable System on the 3-Sphere
We show that the symmetry operators for the quantum superintegrable system on the 3-sphere with generic 4-parameter potential form a closed quadratic algebra with 6 linearly independent generators that closes at order 6 (as differential operators). Further there is an algebraic relation at order 8 e...
Збережено в:
Дата: | 2011 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2011
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/147168 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Two-Variable Wilson Polynomials and the Generic Superintegrable System on the 3-Sphere / E.G. Kalnins, W. Miller Jr., S. Post // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 46 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-147168 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1471682019-02-14T01:25:09Z Two-Variable Wilson Polynomials and the Generic Superintegrable System on the 3-Sphere Kalnins, E.G. Miller Jr., W. Post, S. We show that the symmetry operators for the quantum superintegrable system on the 3-sphere with generic 4-parameter potential form a closed quadratic algebra with 6 linearly independent generators that closes at order 6 (as differential operators). Further there is an algebraic relation at order 8 expressing the fact that there are only 5 algebraically independent generators. We work out the details of modeling physically relevant irreducible representations of the quadratic algebra in terms of divided difference operators in two variables. We determine several ON bases for this model including spherical and cylindrical bases. These bases are expressed in terms of two variable Wilson and Racah polynomials with arbitrary parameters, as defined by Tratnik. The generators for the quadratic algebra are expressed in terms of recurrence operators for the one-variable Wilson polynomials. The quadratic algebra structure breaks the degeneracy of the space of these polynomials. In an earlier paper the authors found a similar characterization of one variable Wilson and Racah polynomials in terms of irreducible representations of the quadratic algebra for the quantum superintegrable system on the 2-sphere with generic 3-parameter potential. This indicates a general relationship between 2nd order superintegrable systems and discrete orthogonal polynomials. 2011 Article Two-Variable Wilson Polynomials and the Generic Superintegrable System on the 3-Sphere / E.G. Kalnins, W. Miller Jr., S. Post // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 46 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 81R12; 33C45 DOI:10.3842/SIGMA.2011.051 http://dspace.nbuv.gov.ua/handle/123456789/147168 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We show that the symmetry operators for the quantum superintegrable system on the 3-sphere with generic 4-parameter potential form a closed quadratic algebra with 6 linearly independent generators that closes at order 6 (as differential operators). Further there is an algebraic relation at order 8 expressing the fact that there are only 5 algebraically independent generators. We work out the details of modeling physically relevant irreducible representations of the quadratic algebra in terms of divided difference operators in two variables. We determine several ON bases for this model including spherical and cylindrical bases. These bases are expressed in terms of two variable Wilson and Racah polynomials with arbitrary parameters, as defined by Tratnik. The generators for the quadratic algebra are expressed in terms of recurrence operators for the one-variable Wilson polynomials. The quadratic algebra structure breaks the degeneracy of the space of these polynomials. In an earlier paper the authors found a similar characterization of one variable Wilson and Racah polynomials in terms of irreducible representations of the quadratic algebra for the quantum superintegrable system on the 2-sphere with generic 3-parameter potential. This indicates a general relationship between 2nd order superintegrable systems and discrete orthogonal polynomials. |
format |
Article |
author |
Kalnins, E.G. Miller Jr., W. Post, S. |
spellingShingle |
Kalnins, E.G. Miller Jr., W. Post, S. Two-Variable Wilson Polynomials and the Generic Superintegrable System on the 3-Sphere Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Kalnins, E.G. Miller Jr., W. Post, S. |
author_sort |
Kalnins, E.G. |
title |
Two-Variable Wilson Polynomials and the Generic Superintegrable System on the 3-Sphere |
title_short |
Two-Variable Wilson Polynomials and the Generic Superintegrable System on the 3-Sphere |
title_full |
Two-Variable Wilson Polynomials and the Generic Superintegrable System on the 3-Sphere |
title_fullStr |
Two-Variable Wilson Polynomials and the Generic Superintegrable System on the 3-Sphere |
title_full_unstemmed |
Two-Variable Wilson Polynomials and the Generic Superintegrable System on the 3-Sphere |
title_sort |
two-variable wilson polynomials and the generic superintegrable system on the 3-sphere |
publisher |
Інститут математики НАН України |
publishDate |
2011 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/147168 |
citation_txt |
Two-Variable Wilson Polynomials and the Generic Superintegrable System on the 3-Sphere / E.G. Kalnins, W. Miller Jr., S. Post // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 46 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT kalninseg twovariablewilsonpolynomialsandthegenericsuperintegrablesystemonthe3sphere AT millerjrw twovariablewilsonpolynomialsandthegenericsuperintegrablesystemonthe3sphere AT posts twovariablewilsonpolynomialsandthegenericsuperintegrablesystemonthe3sphere |
first_indexed |
2023-05-20T17:26:46Z |
last_indexed |
2023-05-20T17:26:46Z |
_version_ |
1796153300348829696 |