On Algebraically Integrable Differential Operators on an Elliptic Curve

We study differential operators on an elliptic curve of order higher than 2 which are algebraically integrable (i.e., finite gap). We discuss classification of such operators of order 3 with one pole, discovering exotic operators on special elliptic curves defined over Q which do not deform to gener...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2011
Автори: Etingof, P., Rains, E.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2011
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/147170
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On Algebraically Integrable Differential Operators on an Elliptic Curve / P. Etingof, E. Rains // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 19 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:We study differential operators on an elliptic curve of order higher than 2 which are algebraically integrable (i.e., finite gap). We discuss classification of such operators of order 3 with one pole, discovering exotic operators on special elliptic curves defined over Q which do not deform to generic elliptic curves. We also study algebraically integrable operators of higher order with several poles and with symmetries, and (conjecturally) relate them to crystallographic elliptic Calogero-Moser systems (which is a generalization of the results of Airault, McKean, and Moser).