Superintegrable Oscillator and Kepler Systems on Spaces of Nonconstant Curvature via the Stäckel Transform

The Stäckel transform is applied to the geodesic motion on Euclidean space, through the harmonic oscillator and Kepler-Coloumb potentials, in order to obtain maximally superintegrable classical systems on N-dimensional Riemannian spaces of nonconstant curvature. By one hand, the harmonic oscillator...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2011
Автори: Ballesteros, A., Enciso, A., Herranz, F.J., Ragnisco, O., Riglioni, D.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2011
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/147172
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Superintegrable Oscillator and Kepler Systems on Spaces of Nonconstant Curvature via the Stäckel Transform / A. Ballesteros, A. Enciso, F.J. Herranz, O. Ragnisco, D. Riglioni // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 48 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-147172
record_format dspace
spelling irk-123456789-1471722019-02-14T01:25:11Z Superintegrable Oscillator and Kepler Systems on Spaces of Nonconstant Curvature via the Stäckel Transform Ballesteros, A. Enciso, A. Herranz, F.J. Ragnisco, O. Riglioni, D. The Stäckel transform is applied to the geodesic motion on Euclidean space, through the harmonic oscillator and Kepler-Coloumb potentials, in order to obtain maximally superintegrable classical systems on N-dimensional Riemannian spaces of nonconstant curvature. By one hand, the harmonic oscillator potential leads to two families of superintegrable systems which are interpreted as an intrinsic Kepler-Coloumb system on a hyperbolic curved space and as the so-called Darboux III oscillator. On the other, the Kepler-Coloumb potential gives rise to an oscillator system on a spherical curved space as well as to the Taub-NUT oscillator. Their integrals of motion are explicitly given. The role of the (flat/curved) Fradkin tensor and Laplace-Runge-Lenz N-vector for all of these Hamiltonians is highlighted throughout the paper. The corresponding quantum maximally superintegrable systems are also presented. 2011 Article Superintegrable Oscillator and Kepler Systems on Spaces of Nonconstant Curvature via the Stäckel Transform / A. Ballesteros, A. Enciso, F.J. Herranz, O. Ragnisco, D. Riglioni // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 48 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 37J35; 70H06; 81R12 DOI:10.3842/SIGMA.2011.048 http://dspace.nbuv.gov.ua/handle/123456789/147172 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description The Stäckel transform is applied to the geodesic motion on Euclidean space, through the harmonic oscillator and Kepler-Coloumb potentials, in order to obtain maximally superintegrable classical systems on N-dimensional Riemannian spaces of nonconstant curvature. By one hand, the harmonic oscillator potential leads to two families of superintegrable systems which are interpreted as an intrinsic Kepler-Coloumb system on a hyperbolic curved space and as the so-called Darboux III oscillator. On the other, the Kepler-Coloumb potential gives rise to an oscillator system on a spherical curved space as well as to the Taub-NUT oscillator. Their integrals of motion are explicitly given. The role of the (flat/curved) Fradkin tensor and Laplace-Runge-Lenz N-vector for all of these Hamiltonians is highlighted throughout the paper. The corresponding quantum maximally superintegrable systems are also presented.
format Article
author Ballesteros, A.
Enciso, A.
Herranz, F.J.
Ragnisco, O.
Riglioni, D.
spellingShingle Ballesteros, A.
Enciso, A.
Herranz, F.J.
Ragnisco, O.
Riglioni, D.
Superintegrable Oscillator and Kepler Systems on Spaces of Nonconstant Curvature via the Stäckel Transform
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Ballesteros, A.
Enciso, A.
Herranz, F.J.
Ragnisco, O.
Riglioni, D.
author_sort Ballesteros, A.
title Superintegrable Oscillator and Kepler Systems on Spaces of Nonconstant Curvature via the Stäckel Transform
title_short Superintegrable Oscillator and Kepler Systems on Spaces of Nonconstant Curvature via the Stäckel Transform
title_full Superintegrable Oscillator and Kepler Systems on Spaces of Nonconstant Curvature via the Stäckel Transform
title_fullStr Superintegrable Oscillator and Kepler Systems on Spaces of Nonconstant Curvature via the Stäckel Transform
title_full_unstemmed Superintegrable Oscillator and Kepler Systems on Spaces of Nonconstant Curvature via the Stäckel Transform
title_sort superintegrable oscillator and kepler systems on spaces of nonconstant curvature via the stäckel transform
publisher Інститут математики НАН України
publishDate 2011
url http://dspace.nbuv.gov.ua/handle/123456789/147172
citation_txt Superintegrable Oscillator and Kepler Systems on Spaces of Nonconstant Curvature via the Stäckel Transform / A. Ballesteros, A. Enciso, F.J. Herranz, O. Ragnisco, D. Riglioni // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 48 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT ballesterosa superintegrableoscillatorandkeplersystemsonspacesofnonconstantcurvatureviathestackeltransform
AT encisoa superintegrableoscillatorandkeplersystemsonspacesofnonconstantcurvatureviathestackeltransform
AT herranzfj superintegrableoscillatorandkeplersystemsonspacesofnonconstantcurvatureviathestackeltransform
AT ragniscoo superintegrableoscillatorandkeplersystemsonspacesofnonconstantcurvatureviathestackeltransform
AT riglionid superintegrableoscillatorandkeplersystemsonspacesofnonconstantcurvatureviathestackeltransform
first_indexed 2023-05-20T17:26:47Z
last_indexed 2023-05-20T17:26:47Z
_version_ 1796153300667596800