Symmetries in Connection Preserving Deformations
We wish to show that the root lattice of Bäcklund transformations of the q-analogue of the third and fourth Painlevé equations, which is of type (A₂+A₁)⁽¹⁾, may be expressed as a quotient of the lattice of connection preserving deformations. Furthermore, we will show various directions in the lattic...
Збережено в:
Дата: | 2011 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2011
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/147174 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Symmetries in Connection Preserving Deformations / C.. Ormerod // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 29 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | We wish to show that the root lattice of Bäcklund transformations of the q-analogue of the third and fourth Painlevé equations, which is of type (A₂+A₁)⁽¹⁾, may be expressed as a quotient of the lattice of connection preserving deformations. Furthermore, we will show various directions in the lattice of connection preserving deformations present equivalent evolution equations under suitable transformations. These transformations correspond to the Dynkin diagram automorphisms. |
---|