Exact Solutions of Nonlinear Partial Differential Equations by the Method of Group Foliation Reduction

A novel symmetry method for finding exact solutions to nonlinear PDEs is illustrated by applying it to a semilinear reaction-diffusion equation in multi-dimensions. The method uses a separation ansatz to solve an equivalent first-order group foliation system whose independent and dependent variables...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2011
Автори: Anco, S.C., Ali, S., Wolf, T.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2011
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/147187
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Exact Solutions of Nonlinear Partial Differential Equations by the Method of Group Foliation Reduction / S.C. Anco, S. Ali, T. Wolf // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 16 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:A novel symmetry method for finding exact solutions to nonlinear PDEs is illustrated by applying it to a semilinear reaction-diffusion equation in multi-dimensions. The method uses a separation ansatz to solve an equivalent first-order group foliation system whose independent and dependent variables respectively consist of the invariants and differential invariants of a given one-dimensional group of point symmetries for the reaction-diffusion equation. With this group-foliation reduction method, solutions of the reaction-diffusion equation are obtained in an explicit form, including group-invariant similarity solutions and travelling-wave solutions, as well as dynamically interesting solutions that are not invariant under any of the point symmetries admitted by this equation.