Exact Solutions of the Equations of Relativistic Hydrodynamics Representing Potential Flows
We use a connection between relativistic hydrodynamics and scalar field theory to generate exact analytic solutions describing non-stationary inhomogeneous flows of the perfect fluid with one-parametric equation of state (EOS) p = p(ε). For linear EOS p = κε we obtain self-similar solutions in the c...
Збережено в:
Дата: | 2007 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2007
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/147190 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Exact Solutions of the Equations of Relativistic Hydrodynamics Representing Potential Flows / M.S. Borshch, V.I. Zhdanov // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 24 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | We use a connection between relativistic hydrodynamics and scalar field theory to generate exact analytic solutions describing non-stationary inhomogeneous flows of the perfect fluid with one-parametric equation of state (EOS) p = p(ε). For linear EOS p = κε we obtain self-similar solutions in the case of plane, cylindrical and spherical symmetries. In the case of extremely stiff EOS (κ = 1) we obtain ''monopole + dipole'' and ''monopole + quadrupole'' axially symmetric solutions. We also found some nonlinear EOSs that admit analytic solutions. |
---|