Miscellaneous Applications of Quons
This paper deals with quon algebras or deformed oscillator algebras, for which the deformation parameter is a root of unity. We motivate why such algebras are interesting for fractional supersymmetric quantum mechanics, angular momentum theory and quantum information. More precisely, quon algebras a...
Збережено в:
Дата: | 2007 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2007
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/147191 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Miscellaneous Applications of Quons / M.R. Kibler // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 71 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | This paper deals with quon algebras or deformed oscillator algebras, for which the deformation parameter is a root of unity. We motivate why such algebras are interesting for fractional supersymmetric quantum mechanics, angular momentum theory and quantum information. More precisely, quon algebras are used for (i) a realization of a generalized Weyl-Heisenberg algebra from which it is possible to associate a fractional supersymmetric dynamical system, (ii) a polar decomposition of SU2 and (iii) a construction of mutually unbiased bases in Hilbert spaces of prime dimension. We also briefly discuss (symmetric informationally complete) positive operator valued measures in the spirit of (iii). |
---|